CS 70 Discrete Mathematics for CS Fall 2001 Wagner Midterm 1

PRINT your name:
SIGN your name;

This exam is closed-book, closed-notes. One page of notes is permitted. Calculators are permitted. Do all your work on the pages of this examination.

You have 2 hours. There are 4 questions, of varying credit (50 points total). You should be able to finish all the questions, so avoid spending too long on any one question.

1. (12 pts.) Short-answer questions

Translate each of the following claims into symbolic form. For instance, a good translation of " n is either at least three or at most five" would be " $n \geq 3 \quad n \sqcap 5$."

Then, state whether the claim is true or false, and briefly justify your answer.
(a) [3 pts.] There is some natural number whose square root is not a natural number.
(b) [4 pts.] For every natural number n, one can find another natural number m that is strictly smaller than n.
(c) [5 pts.] For each natural number k there is some lower bound ℓ so that $k^{n} \geq n!$ when $n \geq \ell$.

2. (12 pts.) Reachability

In chess, a bishop can move diagonally in any of the four directions. Consider a $3 \Pi 3$ board, with a bishop initially placed at the location marked ' B ' (see below). Prove that it can never reach the square marked ' X '.

B		
		X

3. (16 pts.) Proof by induction

Let the sequence $a_{0}, a_{1}, a_{2}, \ldots$ be defined by the recurrence relation

$$
a_{n}=2 a_{n \square 1} \square a_{n \square 2} \text { for } n \geq 2 \text { and } a_{0}=1, a_{1}=2 .
$$

Consider the following argument:
Theorem $1 a_{n} \square n+2$ for all $n \geq 0$.
Proof: We use strong induction on n. The base cases $n=0$ and $n=1$ hold, since $a_{0}=1 \square 0+2$ and $a_{1}=2 \square 1+2$. Now if $a_{i} \square i+2$ for each $i=0,1, \ldots, n \square 1$, for some $n \geq 2$, then we have

$$
a_{n}=2 a_{n \square 1} \square a_{n \square 2} \square 2((n \square 1)+2) \square((n \square 2)+2) \square 2 n+2 \square n \square n+2,
$$

which shows that $a_{n} \square n+2$ holds for all $n \geq 0$.
(a) [6 pts.] Critique the above proof.
(b) [10 pts.] Give a better proof of the theorem.

4. (10 pts.) Matchings

Recall that a matching on n boys and m girls is a pairing where each boy is married to exactly one girl and each girl is married to exactly one boy.
(c) [5 pts.] Let M be a stable matching on n boys and n girls where Alice is paired with Bob. Now Alice and Bob fly off the Bermuda on vacation. We are left with a matching, call it L, on the remaining $n-1$ boys and $n-1$ girls according to who is still paired up. Is L guaranteed to be a stable matching, if M is stable? Prove your answer.
(d) [5 pts.] If $M, M[$ are two matchings, let $M \sqcap M$ [denote the configuration where each girl is married to the better of her two partners in M and $M \square$ (according to that girl's preference list). Is $M \sqcap M\lceil$ guaranteed to be a matching? Prove your answer.
(Note that none of the matchings here are required to be stable.)

Finished! You're done; this is the last page; there are no more questions.

