
;;;;;;;;;;;;;;;;;;;;;;;;;;

;; 2005Sp CS61C Midterm ;;

;;;;;;;;;;;;;;;;;;;;;;;;;;

GS = "Grading Standard"

;;;;;;;;;;;;;

;; QUESTION 1

;;;;;;;;;;;;;

a) "#One" is in a register. Mapping the characters, one-by-one, into

 hex values, we consult the table to find '#' => 0x23, 'O' => 0x4f,

 'n' => 0x6e, and 'e' => 0x65. Concatenating them together yields

 0x234f6e4f.

 GS: 1 point. Half credit if you converted from character 'o'

 rather than 'O'.

 Converting them to an instruction involves mapping the word to a

 binary representation, breaking it up into fields based on the leftmost

 6-digit opcode, and translating each field into a value.

 0b 0010 0011 0100 1111 0110 1110 0100 1111

 The leftmost 6 opcode bits are "00 1000", so it's an addi I-type inst.

 This has 4 fields of length [6 5 5 16], so breaking up the bits we get

 = 00 1000 | 1 1010 | 0 1111 | 0110 1110 0100 1111

 = addi | rs=$26 | rt=$15 | 0x6e4f

 = addi | rs=$k0 | rt=$t7 | 0x6e4f

 = addi $t7,$k0,0x6e4f

 GS: 1 point. No deduction if you lost the half point in the first part

 of the question and correctly converted that answer into an instruction.

 Half credit if you flipped $t7 and $k0.

b) The number of exponent bits controls the range of the IEEE float and

 the number of significant bits controls the precision. Thus, if we hand

 some exponent bits to the significand, the pro will be "reduced range",

 and the con will be "increased precision".

 GS: 2 points. 1 point for each box. All or nothing.

 Common Confusion: Reversing the answers.

c) To convert the pseudoinstruction "bfz $a0 done" to TAL, we have to

 detect either 0, represented as 0x80000000 (-0) or 0x00000000 (0).

 One clever way to do this is to shift the word left by one place

 which would push that topmost bit (1 or 0) into the bitbucket and

 insert a 0 on the right. Then we simply need to test whether that

 resulting value is all zeros. We use our temporary register $at:

 sll $at,$a0,1

 beq $at,$0,done

 GS: 2 points. Lots of interesting answers here... Anything that worked

 as was straight forward enough for me to figure out got full credit. Basically,

 1 point for acknowleding that there are two zeros and 1 point for correctly branching

 on zero.

 Common Confusion:

 Forgetting that there are two zeros and just using a BEQ $a0, $0, done.

 Using the ADDI instruction in ways that didn't make sense.

 Trying to ANDI $at, $a0, 0x7FFFFFF (doesn't work because immediates can't be that big)

 Shifting way, way too much (I saw some solutions with as many as 12 seperate shift instructions.)

d) The Buddy System and Slab Allocator are similar in that they use

 their particular technique to handle small requests but the K&R

 for large memory requests. Each introduces internal fragmentation,

 and K&R introduces external fragmentation, so the answers are:

 Buddy System : causes both types

 Slab Allocator : causes both types

 K&R (Free List Only) : causes external only

 GS: 2 points. 1 point for one incorrect answer, 0 points for 2 or 3 incorrect answers

e) Since Copying only uses half of the memory at any one time, "full"

 means M/2. The others use all the memory, so "full" means "M".

 After GCing, in the best case, all systems are able to clear out all

 unused data, so the least space the data would take up is 0 for all.

 The most space their data could take up after GCing is the same as

 the first column, if the GCer didn't recover any unused space. Wasted

 space? Reference counting cannot handle circular references, so at worst

 the entire memory could be filled (M) with such a structure. The table

 looks like:

 Reference Counting M | 0 | M | M

 Mark and Sweep M | 0 | M | 0

 Copying M/2 | 0 | M/2 | 0 or M/2

 GS: 2 points. -1/2 for each incorrect box.

;;;;;;;;;;;;;

;; QUESTION 2

;;;;;;;;;;;;;

a) 3^n

 GS: All or nothing, 1 point

b) (3^n) - 1

 GS: All or nothing, 1 point

c) Ternary rep of -3: 22...220

 # of positive ints: ((3^n) - 1) / 2

 # of positive ints: ((3^n) - 1) / 2

 # of zeros: 1

 GS: All or nothing, 1/2 point each. Common misconceptions include forgetting

 that we needed the representation for n bits (and instead just giving the answer for 3 digit numbers.

d) TernaryNegate(char *in, char *out) {

 char *tmp = out;

 while (*in)

 *tmp++ = InvertTernaryDigit(*in++);

 AddTernaryConstant(out,1);

 }

 InvertTernaryDigit(char c) {

 return('0' + '2' - c);

 }

 GS: 4 points: 2 points for TernaryNegate, 2 points for InvertTernaryDigit.

 -1 for forgetting to add one (using AddTernaryConstant). Common misconceptions include doing

string operations

 (calling strlen, etc...) and getting lost that way. Some people didn't figure out what it means to invert a

ternary digit

 (tried rotating them, such as: 0->1, 1->2, 2->0).

e) int isNegative(char *in) {

 if (!*in || *in == '0') /* If it's all 1s or starts with a 0, not neg */

 return(0);

 else if (*in == '2') /* If it starts with a 2, negative */

 return(1);

 else /* Else, it starts with a 1, recurse */

 return(isNegative(in+1));

 }

 GS: 6 points: 2 points for getting the trivial cases (a '0' or a '2' at the

 beginning of the number) and 4 points for handling the recursion correctly--all of it, including base

cases. Many misconceptions

 included only checking the first digit or the last digit. Handling the base case of the recursion

incorrectly (not checking for a

 null character. Basically it was one point for each of the following: recursing to the next character

(handling the '1' case, checking

 the null case, checking the '0' case, and checking the '2' case). Another mistake some people made was

to think they could just find

 a 2 anywhere, then it'd be negative. It's only the case if the first non-1 digit is a 2 that it's negative.

;;;;;;;;;;;;;

;; QUESTION 3

;;;;;;;;;;;;;

a) 01: 0x2222FFFC

 02: 0x1040000A

 03: 0xAC830004

 GS: 2 points each, 6 points total.

Each of these three instructions is and I-format and 1 point was given for the immediate (last 16 bits)

and 1

point for the opcode and registers (first 16 bits)

For the branch I only accepted 0x1040 0000a as an answer but in retrospect I should also accept

0x1002 000a which corresponds to having the argument registers flipped. If you did this and lost points

ask for a regrade.

b) 16 Exbirules

 GS: 2 points, all or nothing

c) 2 Tebi

 GS: 2 points, all or nothing. 0 points were given for saying 41 bits (or something to this extent).

;;;;;;;;;;;;;

;; QUESTION 4

;;;;;;;;;;;;;

a) Since the largest exponent is reserved for NaN/inf, the fields are:

 0 110 111111111

 = + 1.111111111 x 2^3

 = + 1111.111111

 = 15 63/64

 GS: 3 points, all or nothing.

b) Denorm exponent is -2, so

 0 000 000000001

 = + 0.000000001 x 2^(-2)

 = + 2^-9 x 2^-2

 = 2^-11

 = 1/2048

 GS: 3 points, all or nothing.

c) 0x1000 = 1 000 00000000 = -0 (we also accepted 0)

 GS: 1 point, all or nothing.

d) 0x1F00 = 1 111 10000000 = NaN (we also accepted -NaN)

 GS: 1 point, all or nothing.

e) inf = 1 111 00000000 = 0x1E00

 GS: 1 point, all or nothing.

f) -4.5 = -100.1 = -1.001 x 2^2 = 1 101 001000000 = 0x1A40

 GS: 1 point, all or nothing.

;;;;;;;;;;;;;

;; QUESTION 5

;;;;;;;;;;;;;

void DeleteTable(keynode_t *table) {

 valuenode_t *head, *tmp;

 if (table != NULL) {

 DeleteTable(table->next); /* Free the right part of the diagram */

 head = tmp = table->values;

 while (head != NULL) { /* Free the bottom part of the diagram */

 tmp = head->next;

 free(head);

 head = tmp;

 }

 free(table); /* Free me (the upper-right node) */

 }

}

GS:

+2 points for the recursive call in the correct place (before free(table);)

+2 points for free(table); in the correct place

+2 points for just trying to free something on the valuenode_t lists

+2 points for correctly iterating through the valuenode list

+2 points for doing it in small number of statements (somewhere between 6 and 10 made sense)

This standard only seemed to work well for the students who sorta knew what they were doing.

Students generally didn't get the last +2 unless they also generally demonstrated they knew what

 they were doing and had the correct basic structure.

Also, I gave out negative points in some cases that demonstrated misunderstanding.

-2 total if they tried derferencing pointers everywhere (but they got the above points for the frees)

-1 if they forgot to check table != NULL at the beginning

-2 total if they neglected to check for more null pointers

;;;;;;;;;;;;;

;; QUESTION 6

;;;;;;;;;;;;;

encryptThis:

 lbu $t0, 0($a0) #

 beq $t0, $0, done #

 lw $t1, 0($a1) #

 addu $t2, $t0, $t1 #

 sw $t2, 0($a2) #

 addiu $a0, $a0, 1 #

 addiu $a1, $a1, 4 #

 addiu $a2, $a2, 4 #

 j encryptThis #

done:

 sw $0, 0($a2) #

 jr $ra #

GS:

control [5]: included the lbu, beq, j instructions.

 [2]: lbu. both lbu and lb were accepted; the fact that the ascii values were in the range 0-127

indicated that it did not matter. 1 point was deducted for using lw; 2 points were deducted for

neglecting to dereference cleartext, and thus testing whether the cleartext pointer was null.

 [3]: beq, j. a central part of this problem was setting the loop control to traverse to allocated arrays.

because the problem explicitly stated to avoid recursion, a recursive call [jal] was not given any points.

 encoding function [2]: included the lw, addu, sw instructions.

 [2]: the main body of the code performed dereferences of the arrays, sums, and then a store back

into an array. the lw, addu, sw are a fairly direct translation of that body.

 increment [2]: included the addiu instructions.

 [2]: the c call of encrypt this relied on the incrementation of the arguments. again, the addiu are a

fairly direction translation of that process. 1 point was deducted for using an incorrect stride for any of

the increments. note the argument types listed in the comments above provide the array stride lengths.

1 point was also deducted for having incorrect arguments- for instance, incrementing some register but

writing into a different register.

 epilogue [1]: included the sw, jr instructions.

 [1]: the epilogue consisted of the base case of zero terminating cyphertext_buffer and the return to

caller. any omission or error was a 1 point deduction.

 as a note of subtlety, the correct operators for all of the additions were the 'unsigned' variants [more

accurately, the 'do not signal overflow' variants]. c does not signal overflow exceptions and will always

compile its additions to these 'unsigned' variants. this error was marked, but no points were deducted,

as this was a common error, and had not been an emphasis of the class. any of the additions in this

problem could have 'overflowed', that is, could have crossed the boundary from 0x7FFFFFFF to

0x80000000, for which the 'signed' variants would cause an exception.

all too common silliness:

 some silly things that many students did included:

 storing $a0, $a1, $a2, andor $ra. procedures are allowed to modify the contents of the $a_ registers,

so storing them was unnecessary. since the problem explicitly forbade recursion, we know that we will

not make a procedure call. thus, saving $ra was also unnecessary.

 doing a lw off of $a2, cyphertext_buffer, our destination buffer. reading from the destination buffer is

an unnecessary operation. in this problem it was exclusively a location to be written to.

 having 'addu $t9 $0 $0' (or something similar) followed by some use of $t9 (rather than $0) to

represent 0, such as in 'beq $t0 $t9 done'. this is not only unnecessary; it makes the code less clear,

since it is not as obvious that $t9 represents 0.

;;;;;;;;;;;;;

;; QUESTION 7

;;;;;;;;;;;;;

a) char foo(char *s) {

 if (*s == '\0')

 return -1;

 else

 return (*s & ander(s+1));

 }

 /* which could be tighted up to be... */

 char ander(char *s) {

 return (*s == '\0') ? -1 : (*s & ander(s+1));

 }

b) The bitwise AND of all characters in a string.

c) @

d) Always return 0

GS:

6 points for C code

1 point for explaination of function

2 points for output of function

1 point for description of modified function.

The last three parts are scored all or nothing. Most students either got

it or did not.

The code was (roughly) divided into three portions: type declarations (1

pt), base case (2 pts), and recursive calls/loops (4 pts). Take note of

the fact that this adds up to 7 points when the code is worth 6 points.

Points were deducted for mistakes for a maximum of 6 points, in the

amounts specified for each part of the code.

Base case

Two points were assigned here for observing that the program branches when

it detects '\0' in the character array. Basic C mistakes (such as using

string* as opposed to *string) lead to a deduction of one point. Major C

mistakes (such as checking "string == NULL" as opposed to "*string ==

'\0') lead to a deduction of two points. Returning a completely bizarre

or strange value also was counted as -2.

Recursive calls/loops

Careful observation of the function will demonstrate that foo calls

itself (the jal instruction) recursively. 4 points were allotted to see

that this call was made, and that the return value was handled properly.

Solutions that involved loops instead of recursive calls were not

penalized if they produced the same result, albeit in a manner different

from the MIPS code.

Major mistakes here involved not realizing that the current character was

and'ed with the rest of the characters in the string (-4), calling foo but

not using the return result (-4), and failing to accumulate properly, i.e.

performing the operation on only the first or last character in the string

(-4).

Minor mistakes only received a deuduction of one point. For example, some

students did not know the syntax of the "&" operator and wrote "and"

instead. More seriously, some students called foo(string++), where the

correct call is foo(++string). foo(string++) will call foo with the SAME

string that it as passed, incrementing it after passing the original

value. This is an infinite loop! The string needs to be incremented

before its value is passed, i.e. ++string.

Type declarations

The correct prototype for foo is

 char foo (char *);

The most common mistake here was to specify int foo (char *). Students

generally assumed that the output type of the register was int, since

there was no indicator elsewhere. However, this poses a problem when it

comes to recursive calls. By performing the operation "(some integer) &

(some character)" in C, the character is SIGN EXTENDED to fill in the

upper three bytes when the char is casted to an int (so the types match

and they can be and'ed together). The MIPS code provided does no such

sign extension- so the result return should be of the form 0x000A. With

the sign extension and filling in of 1's, the output would end up as

0x111A (given an ASCII character with a large enough value).

Declaring the prototype as char foo (char *) but also delcaring temporary

values as int leads to the same problems listed above, so one point was

deducted as well. The only non-standard solutions involved casting values

to (unsigned int) and (unsigned char), of which there were many unique and

interested combinations.

Other -----------------

In some cases, the base case/loops/recursive calls did not exist. Since

these solutions could not traverse the string like the MIPS code, the code

received no credit.

