
Spring 2003, CS 61C, Clancy, midterm 1
Instructions: open-book, you have ~50 minutes. The times provided next to
each problem are only suggestions on how to use your time.

Problem 1 (7 points, 15 minutes)

Part a

Given the following definition,

struct node {
 char name[12];
 int value;
};

what is sizeof(struct node)? Assume that the sizes of chars and ints
are the same as on the 271 Soda computers.

Part b

Translate the following code to assembly language in the space that
follows. Your solution should adhere to conventions described in P&H
section 3.6. Comments in your code will help us understand your solution
approach, and may earn you partial credit for an incorrect solution.

void exam1 (struct node **to) {
 exam2 (*to);
 (*(to-1))--;
}

(Provide your solution by filling in the code outline below)

prolog: save information on stack if necessary
exam1:

call exam2

compute (*(to-1))--

epilog: restore necessary things and return

Spring 2003, CS 61C, Clancy, midterm 1

Spring 2003, CS 61C, Clancy, midterm 1 1

Problem 2 (3 points, 10 minutes)
The following program includes the buggy swap function encountered in a
pre-lecture quiz. Some students observed that this function "worked"
because of values accidentally in memory:

#include <stdio.h>

void swap (int *a, int *b) {
 int *temp;
 *temp = *a;
 *a = *b;
 *b = *temp;
}

int main () {
 int x, y, z;
 x = 2;
 y = 3;
 f (____________); /* Supply the argument(s) to f. */
 swap (&x, &y);
 printf ("The values of x and y are now %d and %d.\n", x, y);
 return 0;
}

In the space below, supply the definition of a function f, and supply a
call to f in the blank above, that will GUARANTEE that the program will
NOT "work", that is, it will crash when the uninitialized temp pointer is
dereferenced. Also explain why your call guarantees that swap will crash.

Problem 3 (6 points, 12 minutes)
Write a C function named copyStrArray that, given an integer "count" and
an array "strArray" that contains "count" strings, returns a pointer to a
complete ("deep") copy of the array. (In Java terminology, this would be
a "clone".) For example, the program segment

Spring 2003, CS 61C, Clancy, midterm 1

Part b 2

int main (int argc, char **argv) {
 char **ptr;
 ptr = copyStrArray (argc, argv);
 ...

would place in ptr a pointer to a copy of argv, the command-line argument
structure.

You may use brackets and other array notation in your solution. You may
assume that there is sufficient free memory in which to build the copied
structure. Make no assumptions about the size of a pointer or a char.
Include all necessary casts, and allocate only as much memory as
necessary. You may use any function in the stdio, stdlib, or string
libraries.

Problem 4 (3 points, 12 minutes)
Consider the storage layout below, which represents five consecutive
blocks of storage using the boundary tags method of storage allocation
described in the Hilfinger notes. All values are in hexadecimal.

101C 00000032
1020 00001808
1024 00001B1C
1028 00000031
102C 00001054
1030 00001010
1034 00000032
1038 00000FF4
103C 0000200C
1040 00000031
1044 00001050 <---- ptr
1048 00001028

Spring 2003, CS 61C, Clancy, midterm 1

Problem 3 (6 points, 12 minutes) 3

104C 00000030
1050 00001030
1054 0000102C

On the diagram, indicate which memory locations from addresses 101C
through 1054 change as a result of the call free(ptr), and specify the
new contents of each modified word.

END OF EXAM

Spring 2003, CS 61C, Clancy, midterm 1

END OF EXAM 4

	Spring 2003, CS 61C, Clancy, midterm 1

