
CS 3, Summer 98

Midterm #1

Professor Grillmeyer

Problem #1:

What do the following Scheme statements evaluate to. Write your answers below each expression in the space
provided. If an expression results in an error, indicate what the error is. Assume that the following define
has been made:

(define lst '(i (do not) want to be a ((list))))

> (list '(lst)) >(member (list (list 'list)) lst)

> (truncate (length lst)) > (cadadr lst)

> (remainder (/ 5 2)) > (subseq lst 5)

>(max '(2 -7 3 4)) > (subseq lst 1 0)

> (expt 10 1) > (reverse lst)

> (/) > (cons '(1 (2)) '((3)))

> (second lst) > (list '(1 (2)) '((3)))

> (position '(want) lst) > (append '(1 (2)) '((3)))

> (rest '(1 2)) > (if (> 3 4) (+3 4) (* 3 4))

> (middle lst) > (and (> 3 4) (+ 3 4) (* 3 4))

CS 3

1

> (list-ref lst 5) > (or (> 3 4) (+ 3 4) (* 3 4))

> (remove '(want to) lst) > (cond (> 3 4) (+ 3 4) (* 3 4))

> (count 'a '(a (a) a)) > (let* ((lst 'word) (word 'lst)) (list lst word))

Problem #2:

Answer true or false to the following questions. Write out true and false (not T and F) in your answers.

_____ The function display is the same as quote, since both return their arguments unevaluated.

_____ Special forms use the normal rules of evaluation but have special rules indicating what they should
return.

_____ A call to the special form if can occur anywhere where an expression can be placed.

_____ A function's body can consist of many expressions which are all evaluated but only the final one is
returned.

_____ The function null? is used to check if something is false.

Problem #3:

Fill in the blanks in the following questions. You can put zero or more functions and/or arguments per
blank. Do not use the return value (e.g., lisp) in any part of your solution.

> (___________ '(tis better (to scheme) than (to (lisp))) __________)

lisp

> (__________ '(tis better (to scheme) than (to (lisp))) __________)

(to)

> (_________ '(tis better (to scheme) than (to (lisp))) ___________)

0

CS 3

2

> (________ '(windoze 98 (yawn (yawn) yawn)) ______________)

(yawn yawn)

> (________ '(windoze 98 (yawn (yawn) yawn)) ______________)

97

Problem #4:

Complete the function worth-more below that takes a list of two sublists representing items you can buy and a
list of two numbers (the prices of the items) and forms a sentence of the form shown below.

> (worth-more '((bud light 6-pack) (dom perignon champagne)) '(3.45 85.00))

(dom perignon champagne/is worth/81.55/more than/bud light 6-pack)

(define (worth-more items prices)
 (let*
 ((low-price _____________________)
 (high-price ____________________)
 (low-item ______________________)
 (price-difference ______________))

 ; final return value
 __________________________________))

Problem #5:

Write a function extract that takes a list a-list, an atom or a list item, and a number extra and returns a list
starting at the first location of item in a-list and including extra additional elements beyond that. You may
assume that item is a top-level element in a-list and that there are at least extra elements afterwards. Here is an
example.

> (extract '(give me a list or give me death) 'me 2)

(me a list)

Complete the function extract below.

(define (extract a-list item extra)

Problem #6:

Use the function definitions below to answer the following questions.

CS 3

3

(define (part1 lst elt)
 (subseq lst (position elt lst)))
(define (part2 lst elt)
 (subseq lst 0 (position elt lst)))
(define (part3 lst elt)
 (subseq lst (+ (position elt lst) 1)))
(define (part4 lst elt)
 (subseq lst 0 (+ (position elt lst) 1)))
(define (part5 lst elt)
 (subseq lst (- (position elt lst) 1)))
(define (part6 lst elt)
 (subseq lst 0 (- (position elt lst) 1)))

Complete the function change-section that takes a list a-list, two items that occur in the list elt1 and elt2, and a
list to insert new-stuff. The function change-section returns a new list with the elements from elt1 to elt2
inclusive replaced with the elements in new-stuff. If elt2 occurs before elt1 in a-list, the elements from elt2 to
elt1 inclusive should be replaced. For example,

> (change-section '(i could use coffee and donuts now) 'coffee 'donuts '(some sleep))

(i could use some sleep now)

> (change-section '(i could use coffee and donuts now) 'now 'i '(good night))

(good night)

Complete the function change-section below. Use some version of part (defined above) in the let variables.
elts is the list of elt1 and elt2 in the order they occur in a-list. left-part is the items in a-list before the first
element of elts. right-part is the items in a-list after the second element of elts.

(define (change-section a-list elt1 elt2 new-stuff)
 ; get elt1 and elt2 in order and then get the left and right parts of a-list

 (let* ((elts (if (< (length (part_ a-list elt1))
 (length (part_ a-list elt2)))

 (list elt1 elt2)
 (list elt2 elt1)))
 (left-part (part_ a-list (first elts)))
 (right-part (part_ a-list (second elts))))
 ; put together the three pieces to form a new list
 ___))

CS 3

4

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.

CS 3

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.5

	CS 3

