
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2003 Instructor: Dan Garcia 2003-10-15

CS3 Midterm
(define (recursion) (recursion))

Personal Information

Last name

First Name

Student ID Number

Login cs3-

The name of your TA (please circle) Alex Andrew Anil Lauren Clint

Name of the person to your Left

Name of the person to your Right

All the work is my own. I had no prior knowledge of
the exam contents nor will I share the contents with

others in CS3 who have not taken it yet. (please sign)

Instructions
• You have two hours to complete this midterm. It

is open book and open notes, no computers.

• Partial credit will be given for incomplete /
wrong answers, so please write down as much
of the solution as you can..

• Please turn off all pagers, cell phones and
beepers. Remove all hats & headphones.

• Write the difficulty and fairness ratings in the
boxes to the right and please add additional
comments below.

Grading Results

Question Max.
Pts

Points
Earned

Difficulty
(0=easy
5=hard)

Fairness
(0=fair

5=unfair)

0 1

1 9

2 10

3 10

4 10

5 10

Total 50

Please comment above & left:

Page 2 of 6

Question 1 : Blasts from the Past!! (9 points, 1 point each, we drop lowest)
Assume the following procedures have already been defined:

(define (infinite-loop) (infinite-loop))

(define (snack-or-not meal)
! (if (equal? meal (or 'breakfast 'lunch 'dinner))
!!!!! 'not
!!!!! 'snack))

(define (my-item num sw) ;; sw means sentence-or-word
! (if (equal? num 1)
!!!!! (first sw)
!!!!! (my-item (- num 1) (bf sw))))

(define (mood? people)
! (or (empty? people)
!!!!! (and (equal? (first people) 'happy)
!!!!!!!!!! (mood? (bf people)))))

Fill in the blanks below. If something is impossible, write IMPOSSIBLE. If
something runs forever, write RUNS-FOREVER. If something will produce an error,
write ERROR. You do not have to explain the error. The symbol Ë means “evaluates
to”. The word IMPOSSIBLE can only appear in the input and ERROR can only
appear in the output. For example,

(+ 3 4) Ë 7!!

1. (if #f (infinite-loop) 'yankees) Ë _____________

2. (first (bf (last (bl '(cs3 is a great class))))) Ë ____________

3. (last ___) Ë (recursion)

4. (snack-or-not 'lunch) Ë ______________

5. (my-item 1.5 '(one two three four)) Ë ______________

6. (my-item _____________________ '(recursion)) Ë e

7. (cond ('false 'yes!) (else 'no!)) Ë ______________

8. (count (se (se 'fun) '() 'recursion "" (word 'mid "" 'term))) Ë _______

9. To what recursion pattern is mood? closest? Circle one below:

 MAPPING FINDING FILTERING COUNTING TESTING COMBINING

10. What is a better name for the mood? predicate? Circle one below:

 all-unhappy? any-unhappy? all-happy? any-happy?

Name: ______________________________________

Page 3 of 6

Question 2: 1,2,3,4,5! Wow! I have the same combo on my luggage! (10 points)
The function combos-for produces a sentence of ‘integer-integer’ combinations. It
takes in a positive integer n as its only argument and returns a sentence of all the
possible combinations of n and all numbers 1 through n separated by a –. E.g.,

(combos-for 1) Ë (1-1)
(combos-for 3) Ë (3-1 3-2 3-3)

Below is an attempt at combos-for:

;; INPUT: A positive integer
;; RETURNS: Returns a sentence of all combinations of n and 1-through-n

 (define (combos-for n)
1. (combos-for-helper n 1))

 (define (combos-for-helper n i)
2. (if (= n i)
3. (word n '- i)
4. (se (word n '- i)
5. (combos-for-helper n (- i 1)))))

There are two bugs. Provide the answers to the following blanks:
(You may include ERROR or RUNS-FOREVER in your answers)

a) A call to (combos-for 2) results in ____________________ when it should return

(2-2 2-1) or (2-1 2-2). Replacing line ___ with ____________________________

fixes that particular bug.

b) After the fix, one bug still exists. Provide a valid call to combos-for that reveals

the bug:(combos-for ________) Ë _________________. Replacing line ___ with

___ fixes the final bug.

After this fix, the function should perform as advertised on all valid input.

c) What type of recursion does the original combos-for-helper employ? Circle one:

 TAIL EMBEDDED

Name: ______________________________________

Page 4 of 6

Question 3: Spin that wheel, cut that pack, and roll those loaded dice! (10 pts)
We want the function dice-combos to return all the possible combinations of rolling
two n-sided dice. The format for a combination is the same as in Question 2, where all
combinations come in “integer-integer” format. Order does not matter within a word
or sentence, so 1-2 and 2-1 mean the same thing, & (2-2 2-1 1-1) and (1-1 2-2 1-2)
mean the same thing. However, i-j and j-i (where j and i are any numbers) should
never both appear in the answer (see the examples below).

dice-combos takes in a positive integer n which represents the number of sides on one
die and returns a sentence of all the combinations that can result from rolling two
n-sided dice. Here are some examples:

(dice-combos 1) Ë (1-1) ;; order doesn’t matter
(dice-combos 2) Ë (2-2 2-1 1-1) ;; within word or sentence
(dice-combos 3) Ë (3-3 3-2 3-1 2-2 2-1 1-1)

Fill in the blanks to complete the code below. Feel free to call any other procedures
found on this test (called “software re-use”); assume they work as intended.

(define (dice-combos n)
 (dice-combos-helper _______________ _________________________________)

(define (dice-combos-helper n so-far)
 (if (= n 1)

 (dice-combos-helper _______ _____________________________________)))

Name: ______________________________________

Page 5 of 6

Question 4: Putting the FUN back in function! (10 pts)
You’re given the following two functions:

(define (get-back w) ;; send the first letter to the back
 (word (bf w) (first w)))

(define (word-fun n w) ;; have some fun with words
 (if (= n 0)
 ""
 (word w (word-fun (- n 1) (get-back w)))))

a) What does the call to (word-fun 1 ‘abc) return?

b) What does the call to (word-fun 3 ‘abc) return?

c) What would be a good name for the unnamed function below that takes in a
number n and a letter L?

 (define (_______________________ n L) (word-fun n L)) ;; L is a letter

d) What are the first and last three numbers of:(word-fun 1000000 1234567890)?

 _________ …lots-of-numbers-in-the-middle… __________
 first-3 last-3

Name: ______________________________________

Page 6 of 6

Question 5: Two roads diverged in a wood… (10 pts)
You’re lost in the forest. Every place in the forest is either a dead-end or has exactly 2
one-way paths: left and right. Your goal is to find out if there is a way home.

We introduce an abstract data type called a place, but you don’t know (and you don’t
need to know) how it is represented; it could be a word, sentence, boolean, or number.
You are presented with four operations (all take a place as an argument):

(home? place) returns #t if the place is your home, #f otherwise.
(dead-end? place) returns #t is the place is a dead-end (i.e., no paths from it).
(go-left place) follows the left path, returning a new place.
(go-right place) follows the right path, returning a new place.

It is an error to go-left or go-right from a dead-end (because it has no paths!). There
is no way in this forest to follow a sequence of left paths and/or right paths and end up
where you started. I.e., there’s no way to walk in circles. Your home (if one exists)
might be at a dead-end or it might not. You might actually start your search at home.

Write (path-home? place) which uses the four functions above and returns #t if you
can get home following a (possibly zero) number of lefts & rights starting from place
and #f otherwise.

(define (path-home? place)

 ___)

(home? ©) Ë #f Example:
(home? ™) Ë #f
(home? H) Ë #t
(home? ®) Ë #f
(home? ß) Ë #f

(dead-end? ©) Ë #f
(dead-end? ™) Ë #t
(dead-end? H) Ë #f
(dead-end? ®) Ë #t
(dead-end? ß) Ë #t (path-home? ©) Ë #t
 (path-home? H) Ë #t
(go-left ©) Ë ™ (path-home? ®) Ë #f
(go-right ©) Ë H
(go-left H) Ë ®
(go-right H) Ë ß
;; go-left or go-right from ™,® or ß is an ERROR

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood

And looked down one as far as I could
To where it bent in the undergrowth;
Then took the other, as just as fair,

And having perhaps the better claim,
Because it was grassy and wanted wear;

Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!

Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:

Two roads diverged in a wood, and I--
I took the one less traveled by,

And that has made all the difference.
– Robert Frost

©

™ H

® ß

