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Q1. [1 pt] Agent Testing Today!

It’s testing time! Not only for you, but for our CS188 robots as well! Circle your favorite robot below.

3



Q2. [6 pts] Power Pellets
Consider a Pacman game where Pacman can eat 3 types of pellets:

• Normal pellets (n-pellets), which are worth one point.

• Decaying pellets (d-pellets), which are worth max(0, 5− t) points, where t is time.

• Growing pellets (g-pellets), which are worth t points, where t is time.

The pellet’s point value stops changing once eaten. For example, if Pacman eats one g-pellet at t = 1 and one d-pellet
at t = 2, Pacman will have won 1 + 3 = 4 points.

Pacman needs to find a path to win at least 10 points but he wants to minimize distance travelled. The cost between
states is equal to distance travelled.

(a) [2 pts] Which of the following must be including for a minimum, sufficient state space?

� Location and type of each pellet
� Total points Pacman has won
� How far Pacman has travelled
� Current time
� How many pellets Pacman has eaten and the point value of each eaten pellet
� Pacman’s location
� Which pellets Pacman has eaten

(b) [2 pts] Which of the following are admissible heuristics? Let x be the number of points won so far.

� Distance to closest pellet, except if in the goal state, in which case the heuristic value is 0.
� Distance needed to win 10− x points, determining the value of all pellets as if they were n-pellets.
� Distance needed to win 10− x points, determining the value of all pellets as if they were g-pellets (i.e. all
pellet values will be t.)

� Distance needed to win 10− x points, determining the value of all pellets as if they were d-pellets (i.e. all
pellet values will be max(0, 5− t).
� Distance needed to win 10 − x points assuming all pellets maintain current point value (g-pellets stop
increasing in value and d-pellets stop decreasing in value)

� None of the above

(c) [2 pts] Instead of finding a path which minimizes distance, Pacman would like to find a path which minimizes
the following:

Cnew = a ∗ t+ b ∗ d

where t is the amount of time elapsed, d is the distance travelled, and a and b are non-negative constants
such that a + b = 1. Pacman knows an admissible heuristic when he is trying to minimize time (i.e. when
a = 1, b = 0), ht, and when he is trying to minimize distance, hd (i.e. when a = 0, b = 1).
Which of the following heuristics is guaranteed to be admissible when minimizing Cnew?

� max(ht, hd) � min(ht, hd) � mean(ht, hd) � a ∗ ht + b ∗ hd
� None of the above
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Q3. [15 pts] Satisfying Search
Consider a search problem (S,A, Succ, s0, G), where all actions have cost 1. S is the set of states, A(s) is the set of
legal actions from a state s, Succ(s, a) is the state reached after taking action a in state s, s0 is the start state, and
G(s) is true if and only if s is a goal state.

Suppose we have a search problem where we know that the solution cost is exactly k, but we do not know the actual
solution. The search problems has |S| states and a branching factor of b.

(a) (i) [1 pt] Since the costs are all 1, we decide to run breadth-first tree search. Give the tightest bound on the
worst-case running time of breadth-first tree search in terms of |S|, b, and k.

The running time is O( )

(ii) [1 pt] Unfortunately, we get an out of memory error when we try to use breadth first search. Which of
the following algorithms is the best one to use instead?

# Depth First Search
# Depth First Search limited to depth k
# Iterative Deepening
# Uniform Cost Search

Instead of running a search algorithm to find the solution, we can phrase this as a CSP:

Variables: X0, X1, X2, · · ·Xk

Domain of each variable: S, the set of all possible states

Constraints:

1. X0 is the start state, that is, X0 = s0.

2. Xk must be a goal state, that is, G(Xk) has to be true.

3. For every 0 ≤ i < k, (Xi, Xi+1) is an edge in the search graph, that is, there exists an action a ∈ A(Xi) such
that Xi+1 = Succ(Xi, a).

With these constraints, when we get a solution (X0 = s0, X1 = s1, · · ·Xk = sk), the solution to our original search
problem is the path s0 → s1 → · · · → sk.

(b) [2 pts] This is a tree-structured CSP. Illustrate this by drawing the constraint graph for k = 3 and providing a
linearization order. (For k = 3, the states should be named X0, X1, X2, and X3.)

Constraint Graph:

Linearization Order:
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(c) We can solve this CSP using the tree-structured CSP algorithm. You can make the following assumptions:

1. For any state s, computing G(s) takes O(1) time.

2. Checking consistency of a single arc F → G takes O(fg) time, where f is the number of remaining values
that F can take on and g is the number of remaining values that G can take on.

Remember that the search problem has a solution cost of exactly k, |S| states, and a branching factor of b.

(i) [1 pt] Give the tightest bound on the time taken to enforce unary constraints, in terms of |S|, b, and k.

The running time to enforce unary constraints is O( )

(ii) [1 pt] Give the tightest bound on the time taken to run the backward pass, in terms of |S|, b, and k.

The running time for the backward pass is O( )

(iii) [1 pt] Give the tightest bound on the time taken to run the forward pass, in terms of |S|, b, and k.

The running time for the forward pass is O( )

(d) [2 pts] Suppose s0 → s1 → · · · → sk is a solution to the search problem. Mark all of the following options that
are guaranteed to be true after enforcing unary constraints and running arc consistency.

� The remaining values of Xi will be si and nothing else.
� The remaining values of Xi will be si and possibly other values.
� A solution can be found by setting each Xi to any of the remaining states in its domain.
� A solution can be found by executing the forward pass of the tree-structured CSP algorithm.
� None of the above

(e) [4 pts] Suppose you have a heuristic h(s). You decide to add more constraints to your CSP (with the hope that
it speeds up the solver by eliminating many states quickly). Mark all of the following options that are valid
constraints that can be added to the CSP, under the assumption that h(s) is (a) any function (b) admissible
and (c) consistent. Recall that the cost of every action is 1.

Any h(s) h(s) is admissible h(s) is consistent

For every 0 ≤ i ≤ k, h(Xi) ≤ i � � �
For every 0 ≤ i ≤ k, h(Xi) ≤ k − i � � �
For every 0 ≤ i < k, h(Xi+1) ≤ h(Xi)− 1 � � �
For every 0 ≤ i < k, h(Xi+1) ≥ h(Xi)− 1 � � �
� None of the above

(f) [2 pts] Now suppose we only know that the solution will have ≤ k moves. We do not need to find the optimal
solution - we only need to find some solution of cost ≤ k. Mark all of the following options such that if you
make single change described in that line it will correctly modify the CSP to find some solution of cost ≤ k.
Remember, the CSP can only have unary and binary constraints.

� Remove the constraints “(Xi, Xi+1) is an edge in the search graph”. Instead, add the constraints
“(Xi, Xi+1) is an edge in the search graph, AND Xi = Xi+1”.

� Remove the constraints “(Xi, Xi+1) is an edge in the search graph”. Instead, add the constraints
“(Xi, Xi+1) is an edge in the search graph, OR Xi = Xi+1”.

� Remove the constraint “Xk is a goal state.” Instead, add the constraint “There is some i, 0 ≤ i ≤ k, such
that Xi is a goal state”.
� Remove the constraint “Xk is a goal state.” Instead, add the constraint “For every 0 ≤ i ≤ k, Xi is a goal
state”.
� None of the above
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Q4. [6 pts] Worst-Case Backtracking
Consider solving the following CSP with standard backtracking search where we enforce arc consistency of all arcs
before every variable assignment. Assume every variable in the CSP has a domain size d > 1.

A B C

D E F

(a) For each of the variable orderings, mark the variables for which backtracking search (with arc consistency
checking) could end up considering more than one different value during the search.

(i) [1 pt] Ordering: A,B,C,D,E, F

� A � B � C � D � E � F

(ii) [1 pt] Ordering: B,D,F,E,C,A

� A � B � C � D � E � F

(b) Now assume that an adversary gets to observe which variable ordering you are using, and after doing so, gets to
choose to add one additional binary constraint between any pair of variables in the CSP in order to maximize
the number of variables that backtracking could occur in the worst case. For each of the following variable
orderings, select which additional binary constraint should the adversary add. Then, mark the variables for
which backtracking search (with arc consistency checking) could end up considering more than one different
value during the search when solving the modified CSP.

(i) [2 pts] Ordering: A,B,C,D,E, F

The adversary should add the additional binary constraint:

# AC

# BF

# AE

# CD

# AF

# CE

# BD

# DF

When solving the modified CSP with this ordering, backtracking might occur at the following variable(s):

� A � B � C � D � E � F

(ii) [2 pts] Ordering: B,D,F,E,C,A

The adversary should add the additional binary constraint:

# AC

# BF

# AE

# CD

# AF

# CE

# BD

# DF

When solving the modified CSP with this ordering, backtracking might occur at the following variable(s):

� A � B � C � D � E � F
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Q5. [7 pts] Best-Case Pruning
For the following zero-sum game trees, the upward pointing triangles represent maximizer nodes, and the downward
pointing triangles represent minimizer nodes. Assume that we expand the children of each node in the game tree
from left to right. For each tree, cross out the maximal set of leaf utility nodes (represented by squares) that can
possibly be pruned with a single assignment of the utility nodes, in order to determine the correct minimax value of
the root of the game tree. You do not need to provide such assignment of the utility nodes.

(a) [2 pts]

(b) [2 pts]

(c) [3 pts]
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Q6. [10 pts] Ghostbusters
Suppose Pacman gets a noisy observation of a ghost’s location for T moves, and then may guess where the ghost
is at timestep T to eat it. To model the problem, you use an HMM, where the ith hidden state is the location of
the ghost at timestep i and the ith evidence variable is the noisy observation of the ghost’s location at time step i.
Assume Pacman always acts rationally.

(a) [2 pts] If Pacman guesses correctly, he gets to eat the ghost resulting in a utility of 20. Otherwise he gets a
utility of 0. If he does not make any guess, he gets a utility of 0.

Which of the following algorithms could Pacman use to determine the ghost’s most likely location at time T?
(Don’t worry about runtime.)

� Variable elimination on the Bayes Net representing the HMM
� Particle filtering with a lot of particles
� Viterbi
� Forward algorithm for HMMs
� None of the above, Pacman should use

(b) [2 pts] In the previous part, there was no penalty for guessing. Now, Pacman has to pay 10 utility in order to
try to eat the ghost. Once he pays, he still gets 20 utility for correctly guessing and eating the ghost, and 0
utility for an incorrect guess. Pacman determines that the most likely ghost location at time T is (x, y), and
the probability of that location is p.

What is the expected utility of guessing that the ghost is at (x, y), as a function of p?

When should Pacman guess that the ghost is at (x, y)?

# Never (he should not guess)
# If p < .
# If p > .
# Always

(c) [2 pts] Now, in addition to the −10 utility for trying to eat the ghost, Pacman can also pay 5 utility to learn
the exact location of the ghost. (So, if Pacman pays the 5 utility and eats the ghost, he pays 15 utility and
gains 20 utility for a total of 5 utility.)

When should Pacman pay the 5 utility to find the exact ghost location?

# Never
# If p < .
# If p > .
# Always

(d) Now, Pacman can try to eat one out of Blinky (B), Inky (I) and Clyde (C) (three of the ghosts). He has some
preferences about which one to eat, but he’s afraid that his preferences are not rational. Help him out by
showing him a utility function that matches his listed preferences, or mark “Not possible” if no rational utility
function will work. You may choose any real number for each utility value. If “Not possible” is marked,
we will ignore any written utility function.

(i) [2 pts] The preferences are B ≺ I and I ≺ C and [0.5, B; 0.5, C] ≺ I

U(B) U(I) U(C)
# Not possible

(ii) [2 pts] The preferences are I ≺ B and [0.5, B; 0.5, C] ≺ C and [0.5, B; 0.5, C] ≺ [0.5, B; 0.5, I]

U(B) U(I) U(C)
# Not possible
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Q7. [6 pts] MDPs
Pacman is in the 3x3 gridworld shown below. In each grid cell, Pacman has 5 actions available: [↑, ↓, ←, →, ◦].
Taking the ◦ action moves Pacman to a special Done state and ends the game. All actions are deterministic. Pacman
is not allowed to take an action into the wall. Otherwise, all actions (including ◦) are available from all grid cells.

For each policy, mark the reward function/discount factor pairs for which the policy is optimal.

1. R1(s, a, s′) =

{
1 s = (0, 0), a = ◦, s′ = Done

0 else

2. R2(s, a, s′) =

{
1 s = (0, 0)

0 else

3. R3(s, a, s′) =

{
2 s′ = Done

1 else

4. R4(s, a, s′) =

{
−3 a = ◦
−1 else

Hint: for any x ∈ R, |x| < 1, we have 1 + x+ x2 + x3 + x4 + · · · = 1/(1− x).

(a) [2 pts]

0 1 2

0 ◦ ← ←

1 ↑ ↑ ↑

2 ↑ ↑ ↑

� R1, γ = 0.5 � R1, γ = 0.9

� R2, γ = 0.5 � R2, γ = 0.9

� R3, γ = 0.5 � R3, γ = 0.9

� R4, γ = 0.5 � R4, γ = 0.9

� None of the provided options

(b) [2 pts]

0 1 2

0 → ← ←

1 ↑ ↑ ↑

2 ↑ ↑ ↑

� R1, γ = 0.5 � R1, γ = 0.9

� R2, γ = 0.5 � R2, γ = 0.9

� R3, γ = 0.5 � R3, γ = 0.9

� R4, γ = 0.5 � R4, γ = 0.9

� None of the provided options

(c) [2 pts]

0 1 2

0 → → ↓

1 ↑ ← ↓

2 ↑ ← ←

� R1, γ = 0.5 � R1, γ = 0.9

� R2, γ = 0.5 � R2, γ = 0.9

� R3, γ = 0.5 � R3, γ = 0.9

� R4, γ = 0.5 � R4, γ = 0.9

� None of the provided options

10



Q8. [8 pts] RL
Pacman is in an unknown MDP where there are three states [A, B, C] and two actions [Stop, Go]. We are given the
following samples generated from taking actions in the unknown MDP. For the following problems, assume γ = 1
and α = 0.5.

(a) We run Q-learning on the following samples:

s a s’ r
A Go B 2
C Stop A 0
B Stop A -2
B Go C -6
C Go A 2
A Go A -2

What are the estimates for the following Q-values as obtained by Q-learning? All Q-values are initialized to 0.

(i) [2 pts] Q(C, Stop) =

(ii) [2 pts] Q(C,Go) =

(b) For this next part, we will switch to a feature based representation. We will use two features:

• f1(s, a) = 1

• f2(s, a) =

{
1 a = Go

−1 a = Stop

Starting from initial weights of 0, compute the updated weights after observing the following samples:

s a s’ r
A Go B 4
B Stop A 0

What are the weights after the first update? (using the first sample)

(i) [1 pt] w1 =

(ii) [1 pt] w2 =

What are the weights after the second update? (using the second sample)

(iii) [1 pt] w1 =

(iv) [1 pt] w2 =
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Q9. [8 pts] Bayes Net and Decision Networks
(a) [2 pts] We have the following decision network with the conditional probability and utility tables:

B

A

U

B P (B)
0 x
1 1− x

B A U(B,A)

0 +a 10

0 −a 4

1 +a 0

1 −a 8

Suppose that we also know that MEU(B) = 8.5. What is the value of x?

x =

(b) Which of the following decision networks can simultaneously satisfy all of the given VPI and conditional
independence constraints for some setting of conditional probability and utility tables? Mark the box below
each decision network that can satisfy the constraints, or mark None of the above if none of the decision
networks can satisfy the constraints.

(i) [3 pts] V PI(E) > 0, E ⊥⊥ C

B
E

C
D

A

U

B
E

C
D

A

U

B
E

C
D

A

U

B
E

C
D

A

U

� � � �

� None of the above

(ii) [3 pts] V PI(C) > 0, V PI(D|E) = 0, C ⊥⊥ D, C ⊥⊥ E|B

B
E

C
D

A

U

B
E

C
D

A

U

B
E

C
D

A

U

B
E

C
D

A

U

� � � �
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� None of the above
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Q10. [7 pts] DNA Sequencing
Suppose you want to model the problem of DNA sequencing using the following set-up:

• Xi, Yi ∈ {A, T,C,G}

• Xi : ith base of an individual

• Yi : ith base output by DNA sequencer

(a) First, you start by using a standard HMM model, shown below.

. . . Xi−1 Xi Xi+1 . . .

. . . Yi−1 Yi Yi+1 . . .

(i) [1 pt] Which of the following assumptions are made by the above HMM model

� Xi ⊥⊥ Yi+1 | Xi+1 ∀ i
� Xi ⊥⊥ Xj ∀ i 6= j

� Yi ⊥⊥ Yj ∀ i 6= j

� Xi−1 ⊥⊥ Xi+1 | Xi ∀ i
� Xi ⊥⊥ Yj ∀ i 6= j

� None of the provided options.

(b) Now you want to model the quality of your sequencer with a random variable Q, and decide to use the following
modified HMM:

. . . Xi−1 Xi Xi+1 . . .

. . . Yi−1 Yi Yi+1 . . .

Q

(i) [2 pts] Which of the following assumptions are made by the above modified HMM model?

� Xi−1 ⊥⊥ Xi+1 | Xi ∀ i
� Xi ⊥⊥ Xj ∀ i 6= j

� Xi ⊥⊥ Yj ∀ i 6= j

� Yi ⊥⊥ Yj ∀ i 6= j

� Xi ⊥⊥ Yi+1 | Xi+1 ∀ i

� Q ⊥⊥ Xi | Yi ∀ i
� Q ⊥⊥ Xi | Y1, ...YN ∀ i
� Q ⊥⊥ Xi ∀ i
� None of the provided options.

(ii) [2 pts] You observe the sequencer output y1, . . . , yN and want to estimate probability distribution of the
particular sequence of length c starting at base k: P (Xk . . . Xk+c−1 | y1, . . . yN ).
Select all elimination orderings which are maximally efficient with respect to the sum of the generated
factors’ sizes.

� X1, . . . , Xk−1, Xk+c, . . . , XN , Q

� Q,X1, . . . , Xk−1, XN , . . . , Xk+c

� X1, . . . , Xk−1, Q,Xk+c, . . . , XN

� X1, . . . , Xk−1, XN , . . . , Xk+c, Q

� Q,X1, . . . , Xk−1, Xk+c, . . . , XN

� X1, . . . , Xk−1, Q,XN , . . . , Xk+c

� None of the provided options:

(iii) [2 pts] How many entries are in the final conditional probability table P (Xk, . . . , Xk+c−1 | y1, . . . , yN )?
The answer takes the form ab – what are a and b?

a = b =
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Q11. [11 pts] Dynamic Bayes’ Nets
Suppose you have the following Dynamic Bayes Net model, with the associated conditional probability tables (CPTs).

X1

Y1

E1

F1

X2

Y2

E2

F2

X3

Y3

E3

F3

· · ·

· · ·

X1 P(X1)
+x1 0.5
−x1 0.5

Y1 P(Y1)
+y1 0.5
−y1 0.5

Xt Et P(Et | Xt)
+xt +et 0.2
+xt −et 0.8
−xt +et 0.5
−xt −et 0.5

Yt Ft P(Ft | Yt)
+yt +ft 0.4
+yt −ft 0.6
−yt +ft 0.8
−yt −ft 0.2

Xt Yt Xt+1 P( Xt+1 | Xt, Yt)
+xt +yt +xt+1 0.8
+xt +yt −xt+1 0.2
+xt −yt +xt+1 0.5
+xt −yt −xt+1 0.5
−xt +yt +xt+1 0.6
−xt +yt −xt+1 0.4
−xt −yt +xt+1 0.8
−xt −yt −xt+1 0.2

Yt Yt+1 P( Yt+1 | Yt)
+yt +yt+1 0.6
+yt −yt+1 0.4
−yt +yt+1 0.2
−yt −yt+1 0.8

You observe the evidence up to t = 2 as (+e1,−f1,−e2,+f2) and want to infer P (X2, Y2|E1 = +e1, F1 = −f1, E2 =
−e2, F2 = +f2).

Throughout this problem, you may answer as either numeric expressions (e.g. 0.03+0.1∗0.5) or numeric values (e.g.
0.08), or None if you think no result can be obtained based on given information.

(a) [1 pt] Prior Sampling. The following five samples were generated from prior sampling. What is the sample
based estimate of P (Y2 = +y2 | E1 = +e1, F1 = −f1, E2 = −e2, F2 = +f2)?

−x1 −y1 +x2 +y2 +e1 −f1 −e2 +f2
−x1 +y1 +x2 −y2 +e1 −f1 −e2 +f2
+x1 −y1 +x2 +y2 +e1 +f1 −e2 +f2
+x1 +y1 −x2 +y2 +e1 −f1 −e2 +f2
+x1 −y1 −x2 −y2 +e1 −f1 −e2 −f2

Answer:

(b) [1 pt] Rejection Sampling. You generate samples of (X1, Y1, X2, Y2, E1, F1, E2, F2), variable by variable. In the
first sample, you have already sampled the first four variables as −x1,−y1,+x2,+y2 and have not yet sampled
(E1, F1, E2, F2). What is the probability of this sample being rejected?

Answer:
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(c) Likelihood Weighting. The following two samples were generated with likelihood weighting.

−x1 −y1 +x2 +y2 +e1 −f1 −e2 +f2
−x1 −y1 +x2 −y2 +e1 −f1 −e2 +f2

(i) [1 pt] What is the weight of the first sample?

Answer:

(ii) [1 pt] What is the weight of the second sample?

Answer:

(iii) [1 pt] What is the sample-based estimate of P (Y2 = +y2 | E1 = +e1, F1 = −f1, E2 = −e2, F2 = +f2)?

Answer:

(d) [2 pts] Gibbs Sampling. You want to use Gibbs Sampling to estimate P (Y2 = +y2 | E1 = +e1, F1 = −f1, E2 =
−e2, F2 = +f2), choosing to ignore evidence at t = 3 and onward.
The current sample is

−x1 −y1 +x2 +y2 +e1 −f1 −e2 +f2

and the next step is to resample X1, what is the probability that the new assignment to X1 is +x1?

Answer:

(e) Particle Filtering. You want to estimate P (X2, Y2|E1 = +e1, F1 = −f1, E2 = −e2, F2 = +f2) using particle
filtering.

(i) [1 pt] At t = 1, you have a single particle (X1 = −x1, Y1 = −y1). After passing it through the transition
model, what is the probability of this particle becoming (X2 = +x2, Y2 = +y2)?

Answer:

(ii) [1 pt] Suppose after passing the sample through the transition model, you have the particle: (X2 =
+x2, Y2 = +y2). What is the weight of this particle after the observe update?

Answer:

(f) [2 pts] You now want to estimate P (Xt, Yt|e1:t, f1:t) for some large t. You have limited computational resources
and can either get N samples before rejection for rejection sampling, get N samples with likelihood weighting,
or track of N particles using particle filtering.
Rank these three algorithms, indicating “1” for the algorithm which will give the most accurate sample-based
approximation for P (Xt, Yt|e1:t, f1:t), and “3” for the least accurate.

Rejection Sampling: Likelihood Weighting: Particle Filtering:
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Q12. [15 pts] Decision Trees and Other Classifiers
(a) Suppose you have a small training data set of four points in distinct loca-

tions, two from the “+” class and two from the “–” class. For each of the
following conditions, draw a particular training data set (of exactly four
points: +, +, –, and –) that satisfy the conditions. If this is impossible,
mark “Not possible”. If “Not possible” is marked, we will ignore any data points.

For example, if the conditions were “A depth-1 decision tree can perfectly classify
the training data points,” an acceptable answer would be the data points to the
right.

�

� �

�
I�

I�

(i) [2 pts] A linear perceptron with a bias term can perfectly classify the training data points, but a linear
perceptron without a bias term cannot.

I�

I�

# Not possible

(ii) [2 pts] A dual perceptron with a quadratic kernel function K(x, z) = (1 + x · z)2 can perfectly classify the
training data points, but a linear perceptron with a bias term cannot.

I�

I�

# Not possible

(iii) [2 pts] A depth-2 decision tree can classify the training data points perfectly, but a dual perceptron with
a quadratic kernel function K(x, z) = (1 + x · z)2 cannot.

I�

I�

# Not possible

(iv) [2 pts] A depth-2 decision tree cannot classify the training data perfectly

I�

I�

# Not possible
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(b) [2 pts] The plot below shows training instances for two classes (“+” and “-”). You use various methods to train
a classifier between “+” and “-”. You are then given a new point (marked by the “x”) and use the previously
trained systems to classify the new point.

Which of these methods are guaranteed to classify the new point as a “-”?

� Linear SVM (without using a bias term)

� Linear SVM (using a bias term)

� Dual perceptron with K(x, z) = x · z
� Dual perceptron with K(x, z) = x · z + 1

� None of the above

(c) [2 pts] Let {xi, yi|i = 1 . . . N} be training examples and their class labels s.t. yi ∈ {−1, 1}. Assume that the
training data is separable when using a linear SVM with an additional bias feature.
For which of these kernel functions is the training data guaranteed to be separable using a dual perceptron?

� K(x, z) = x · z + 1

� K(x, z) = (x · z + 1)2
� K(x, z) = x · z
� None of the options

(d) You are still trying to classify between “+” and “-”, but your two features now can take on only three possible
values, {−1, 0, 1}. You would like to use a Naive Bayes model with the following CPTs:

X P (X)
- 0.4
+ 0.6

X F1 P (F1|X)
- -1 0.4
- 0 0.5
- 1 0.1
+ -1 0.7
+ 0 0.1
+ 1 0.2

X F2 P (F2|X)
- -1 0.1
- 0 0.1
- 1 0.8
+ -1 0.6
+ 0 0.1
+ 1 0.3

(i) [1 pt] If you observe that F1 = −1 and F2 = −1, how will you classify X using Naive Bayes?
# X = − # X = +

(ii) [1 pt] If you observe that F1 = 0 and F2 = 0, how will you classify X using Naive Bayes?
# X = − # X = +

(iii) [1 pt] If you observe that F1 = 1 and F2 = 1, how will you classify X using Naive Bayes?
# X = − # X = +
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