
CS-174 Combinatorics and Discrete Probability, Fall 98Solutions for Sample Midterm 111/5. We will have seen two di�erent outcomes when, and only when, we have seen an outcome di�erent1. from that of the �rst toss. Let X be the number of tosses (after the �rst toss) till we see a value di�erentfrom the �rst outcome. Then X is a geometric random variable with \heads" probability p = 5=6, and henceE(X) = 1=p = 6=5. Thus the total expected number of tosses is 1 + E(X) = 11=5.e�1. This is just the number of �xed points in a random permutation, which as n ! 1 has a Poisson2. distribution (see Note 3).pn. This is the number of balls we can throw with a small probability of getting a collision.3. (a) np; (b) np(1 � p). This is because X = Pni=1Xi, where the Xi are independent Bernoulli random4. variables with probability p of being 1. The expectation of each Xi is p, and its variance is p� p2. Thus theexpectation of X is np (since expectations sum) and the variance of X is np(1 � p) (since the variance ofthe sum of independent random variables is the sum of the individual variances).Pr[X > 10] < 1=10 is true by Markov's inequality.5. Pr[X = 1] > 0 may be false. For example, let X = 0 w.p. 3=4 and X = 4 w.p. 1=4.Pr[X � 2] > 0 is true, since if X were always in the interval [0; 2) with � = E(X) = 1, then (X � �)2 wouldalways be in the range [0; 1], and hence its expectation Var(X) = E((X � �)2) would be at most 1, whichcontradicts Var(X) = 3.E(X2) = Var(X) + E(X)2 = 4 is true.Pr[X � 1] = Pr[X � 1] may be false (see the example above).Pr[X � 3] = 0 may be false (again see the example above).(a) e�2. This is simply (1 � 2=n)n ! e�2.6. (b) e�2. One way to see this is to let E1 be the event that the �rst bin has exactly one ball, E2 be the eventthat the second bin is empty and use Pr[E1^E2] = Pr[E1]Pr[E2jE1] = �n1� 1n(1� 1n)n�1� (1� 1n�1)n�1 ! e�2.(a) 7; (b) 6. Use the inclusion-exclusion principle (or just draw a Venn diagram).7. All three methods in this question involve a simple experiment that is repeated until a number is generated.8. Clearly the whole method will be unbiased if and only if the simple experiment is unbiased.(a) Only for p = 12 , since we need p2 = p(1� p), i.e., p = 1� p.(b) No values, since in each experiment the probability of getting 1 is (1 � p)2, that of 2 is 2p(1 � p) andthat of 3 is p2, but these values can never all be equal.(c) For all values 0 < p < 1, since in each experiment the probability of each number in f1; 2; 3g is p(1�p)2.(d) Let X be the number of rounds required for Alice to succeed, and Y be the number of tosses. ThenY = 2X, and X is a geometric random variable with probability of success being 1 � (1 � p)2. HenceE(Y ) = 2� [1� (1� p)2]�1 = 2=(2p� p2) (= 8=3 for p = 1=2).(e) Let X be the number of rounds required for Charlie to succeed, and Y be the number of tosses. ThenY = 3X, and hence Var(Y ) = 9Var(X). But X is a geometric random variable with success probabilityq = 3p(1�p)2, and so Var(X) = 1=q2�1=q = (1� q)=q2. Thus Var(Y ) = 9(1� q)=q2 with q as above. (Thiscan't really be simpli�ed much.)(f) Since we can 
ip each coin twice, we use von Neumann's trick (from Homework 2, qun. 2(c)) to simulatean unbiased coin, and then we can use Alice's algorithm using these (simulated) unbiased coins.1



(a) 2(n2).9. (b) pm(1� p)(n2)�m.(c) Let Xe be the indicator variable for the inclusion of the edge e (i.e., Xe = 1 if e is present, and Xe = 0otherwise). Then E(Xe) = p. Also X =PeXe, and so E(X) = �n2�p.(d) S is a clique if and only if each of its �k2� internal edges is present. Since edges are independent, theprobability of this is p(k2).(e) Let XS be the indicator variable for the event that S is a clique, for any k-vertex subgraph S. Then,from part (d), E(XS) = p(k2). If X is the number of cliques of size k in G, we have X = PS XS , and soE(X) =PS E(XS) = �nk�p(k2), since G has exactly �nk� k-vertex subgraphs.(a) There are more bit-strings of length 1Gb than those of length no more than 0.9Gb. However, the number10. of compressible �les cannot be greater than the number of bit-strings of length no more than 0.9Gb (considercompressing a �le and then uncompressing it | you should get the original �le). Thus some �les will notbe compressible, contrary to the company's claim.(b) Since we can't assume anything about the way the software works, the sensible thing to do is to justchoose a 1Gb bit-string uniformly at random, and hope that it will not compress.(c) The number of length-k bit-strings is 2k. Thus the number of di�erent bit strings of length at most mis Pmk=0 2k = 2m+1 � 1 < 2m+1. As argued in part (a), the number of correctly compressed �les cannot begreater than the number of bit-strings of length at most 0.9Gb, which is less than 20:9�233+1. Since thereare 2233 1Gb bit-strings, we have Pr[�le compressed correctly] < 20:9�233+1 � 2�233 = 21�0:1�233, which isminuscule. Thus the string chosen in part (b) will almost certainly not compress correctly.
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