course, exam #, semester/year (e.g., CS 150, Midterm #2, Fall 1994) CS 172, Solution of Midterm #1, Spring 1999

CS 172 , Spring, 1999 Professor M. Blum

Problem #1

a) Define the number of steps taken by a NDTM on input x.b) Define the number of steps taken by a NDTM on inputs of length of n.

a) # NDTMi [x] = case1: min(y belongs to (summation *)) { # DTMi[y,x]} (this is the deterministic half of the NDTMi)

if there exists y such that DTMi[y,x] accepts (i.e. enters an accepting state)

case2: 1 otherwise

b) # NDTMi(n) = Max{# NDTMi[x]}, |x| = n

Problem #2

Define two (computational) problems p1, p2 to be poly-time equivalent iff it is possible to solve p1 in polynomial time given an algorithm to solve p2 in polynomial time (p1 <= p2), and vice-versa (p2 <= p1).

Are the following two problems poly-time equivalent? If so, prove it. If not, explain why not.

Decision: Instance: NDTMi, x in {0,1}*, m in unarym (ie 1.....1 = 1). Question: Does NDTMi accept x in m steps? ie does there exist a y in {0,1}* s.t. DTMi accepts (y,x) in m steps, if any (ie if such y exists); "NONE" if there is no such y.

1) YES! <u>Decision <= Optimization:</u>

- If optimization program returns y, then the Decision program returns YES
- If optimization program returns "NONE", then the DEcision program returns NO.

The running time of the Decision algorithm = running time of the Optimizaton algorithm + O(1).

2) <u>Optimization <= Decision:</u>

- If Decision algor returns No, then the Opt. algor returns NONE.
- If Dec. algor returns YES, then the Opt. algor must find y. It can do this by finding the bits of y = Yk Y(k-1) ... Yo one at a time starting say with Yo.

If the Dec. algor rejects [NDTMil(Yo = 0), x,m], then we know that $\underline{Yo = 1}$. Else we know that it's ok to let $\underline{Yo = 0}$. In general, having determined $\underline{Y(i-1) = A(i-1)}$, $\underline{Yo = Ao}$, one can determine Yi by augmenting the NDTMi to NDTMiloA(i-1)...Ao, which overwrites the guessed $\underline{Yi Y(i-1)}$... Yo with $\underline{oA(i-1)}$...Ao. If the NDTMiloA(i-1)...Ao rejects, then we know that $\underline{Ai = 1}$. Else ok to let $\underline{Ao = 0}$. The size of the augmented DTMilAi...Ao is just IDTMil + O(m), which is poly in (INDTMil + |x| + m).

Problem #3

Explain what problems if any you encounter in doing the above reductions In the case that m is given in binary instead of unary.

• Decision <= Optimization as before, but

Optimization (NOT <=) Decision: The reason is that the required output y (y = 2^x) man be <u>terribly</u> long, length |y| = x, for inputs of length n = |NDTMil + |x| + lgm (m = poly(|y|) = |NDTMil + |x| + O(|x|) = poly(|x|).
The decision algorithm can take just poly(n) steps, because it knows the existence of y without having to exhibit it. But the optimization algorithm must exhibit (print) y.

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact<u>examfile@hkn.eecs.berkeley.edu.</u>