Final Exam Solutions for CS 172, Spring '99

Professor Manuel Blum

Problem 1

Q: What base?
A: 2

Q1.1:
$\mathrm{n}=1+\left[\log _{2} \mathrm{~N}\right]$
Q1.2:
a. $(\mathrm{n}+1) / 2$
b. $\mathrm{O}\left(2^{\wedge} \mathrm{n} * \mathrm{n}\right)$ or Omega $\left(2^{\wedge} \mathrm{n} * \mathrm{n}\right)$

Q1.3:
(a) is $\operatorname{poly}(\mathrm{n})$ and (b) is $\exp (\mathrm{n})$

Problem 2

Q2.1:
Move disks 1...n from A via B to C:
If $n=1$, move disk 1 from A to C else

1. move disks 1...n-1 from A via C to B;
2. move disk n from A to C
3. move disks $1 . . . \mathrm{n}-1$ from B via A to C .

Q2.2:
$\mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n}-1)+1+\mathrm{f}(\mathrm{N}-1)=2 \mathrm{f}(\mathrm{N}-1)=1=2^{\wedge} \mathrm{n}-1$

Q2.3:
No. To move disk n to C , it is necessary that disks $1 \ldots \mathrm{n}-1$ be on $\mathrm{B}(>=\mathrm{f}(\mathrm{n}-1)$ steps). After disk n is moved to C ($>=1$ step), it is necessary to move all disks $1 . . \mathrm{n}-1$ from B to $\mathrm{C}(>=\mathrm{f}(\mathrm{n}-1)$ steps). Thus the algorithm takes $>=\mathrm{f}(\mathrm{n})=2^{\wedge} \mathrm{n}-1$ steps.

Problem 3

Q3.1:
Depends: Yes if all pieces of furniture are in correct order. No otherwise.
Q3.2:
Yes. Suppose wlg that the final order is [5 6 _ _ (new line) 123 4]. First rotate clockwise 1 into correct position (this needs just 1 empty slot). This takes $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ steps. Then rotate 2 into position diagonal to 1 : [_ 2
\ldots (new line) $1 \ldots$...] by rotating clockwise. Then put 2 in its correct position. This reduces the 2 x n problem to a $2 \mathrm{x}(\mathrm{n}-1)$ problem with 2 empty slots. Proceed inductively.

Q3.3:
Yes. Suppose wlg that the final order is [$910 \ldots$ (new line) 5678 (new line) 1234]. This is the case $m=3$, $\mathrm{n}=4$.

1. Use the two empty slots to move 1 to a position against the wall. Then rotate 1 into position (just 1 empty slot against the wall suffices to do this.
2. Put an empty slot adjacent to 1 in the position slated for 2 , and rotate 2 into a position next to that slot.
3. Continue recursively to get [(junk)...bottom row: 1234].
4. Now use method of Q3.2 to finish the job on the 2 remaining rows.

Q3.4:
Yes. Use the same method as Q3.3 to get the bottom first row correct and then recursively get the remaining rows correct. Notice that this takes $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$ steps for each of m recursions, or $\mathrm{O}\left(\mathrm{mn} n^{\wedge} 3\right)$ total.

Problem 4

Q4:
Because there are only a finite number of possible configurations, one can conduct (in principle) a graph whose nodes are configurations, edges join 2 configurations if one can go from one configuration to the other in just one step. Consequently, this is decidable. I don't know the answer to any of the other questions. The special case of problem 3 is in P .

