David Wolfe
Try to keep your answers succinct. The exam is CLOSED BOOK. All questions count equally. First, a few helpful theorems and definitions. Just because a theorem is mentioned, it may not be helpful on the exam.

Lemma: The Pumping Lemma: If L is regular then $(\exists n)(\forall z \in L$ such that $|z| \geq n)(\exists u v w$ such that $z=u v w$ and $|u v| \leq n$ and $|v| \geq 1)(\forall i): u v^{i} w \in L$
Lemma: The contrapositive of the Pumping Lemma: If $(\forall n)(\exists z \in L$ such that $|z| \geq n)(\forall u v w$ such that $z=u v w$ and $|u v| \leq n$ and $|v| \geq 1)(\exists i): u v^{i} w \notin L$ then L is not regular.

Theorem: Rice's theorems: Let $L_{\mathcal{P}}$ be the set of machines with property \mathcal{P}. If \mathcal{P} is non-trivial, $L_{\mathcal{P}}$ is undecidable. Further, $L_{\mathcal{P}}$ is r.e. if and only if \mathcal{P} satisfies the following three conditions:

1. If $L \in \mathcal{P}$ and $L \subseteq L^{\prime}$ for some r.e. L^{\prime}, then $L^{\prime} \in \mathcal{P}$.
2. If L is an infinite language in \mathcal{P}, then there exists a finite subset of L in \mathcal{P}.
3. The set of finite languages in \mathcal{P} is enumerable.

3-SATISFIABILITY (3SAT)
INSTANCE: A boolean formula, F, which is an AND of clauses where each clause is an OR of 3 literals.

QUESTION: Is F satisfiable?
3-DIMENSIONAL MATCHING (3DM)
INSTANCE: A set $M \subset W \times X \times Y$, where $|W|=|X|=|Y|=q$ are disjoint sets.
QUESTION: Does M contain a matching, $M^{\prime} \subset M$, such that no two elements of M^{\prime} agree in any coordinate.

VERTEX COVER (VC)

INSTANCE: A graph G and integer K
QUESTION: Is there a subset of K vertices which cover all the edges?
CLIQUE
INSTANCE: A graph G and integer K
QUESTION: Does the graph contain a clique (comletely connected subgraph) of K vertices?
HAMILTONIAN CIRCUIT (HC)
INSTANCE: A graph G
QUESTION: Is there a cycle through all the vertices of G

PARTITION

INSTANCE: A finite set A and a "size" $s(a) \in Z^{+}$for each $a \in A$.
QUESTION: Is there a subset $A^{\prime} \subset A$ such that

$$
\sum_{a \in A^{\prime}} s(a)=\sum_{a \in A-A^{\prime}} s(a)
$$

1. Prove or disprove the following languages are regular:
(a) $L_{a}=\left\{a^{s} b^{t}: s \geq t \geq 1\right\}$.
(b) $L_{b}=\left\{a^{s} b^{t}: t>s \geq 1\right\}$. For the proof, use set closure properties and your result about L_{a}. No credit for using the pumping lemma.
(c) $L_{c}=\{w: w$ contains the substring " $0011 "\}$
2. Which of the following are r.e.? Give a proof. (Hint: Any reductions can be done from L_{u} by creating an M^{\prime} from $\langle M, w\rangle$ which accepts either \emptyset or Σ^{*} depending on whether $M(w)$ rejects or accepts.)
(a) $L_{3 M}=\left\{\left\langle M_{1}, M_{2}, M_{3}\right\rangle\right.$: At least two of the machines accept the same language. $\}$
(b) $\overline{L_{3 M}}$
(c) $L=\left\{\langle M\rangle: M(\epsilon)\right.$ never moves past the $|Q|^{\text {th }}$ tape square $\}$. (Q is the set of states of M.)
3. Of the following three problems, prove one is in NP, prove one in co-NP, and prove the third is in P.
(a) INSTANCE: Two graphs on the same vertex set $G=(V, E)$ and $H=\left(V, E^{\prime}\right)$.

QUESTION: Are G and H non-isomorphic?
(Note that it says "non-isomorphic" rather than "isomorphic".)
(b) INSTANCE: A boolean formula, F, on the 100 variables $\left\{x_{1}, \ldots, x_{100}\right\}$.

QUESTION: Is F unsatisfiable?
(c) INSTANCE: A binary number $n>1$ in binary.

QUESTION: Is n composite? ("Composite" means "not prime").
4. Prove FEEDBACK VERTEX SET is NP-complete.

FEEDBACK VERTEX SET
INSTANCE: Directed graph $G=(V, E)$ and integer K.
QUESTION: Is there a subset $V^{\prime} \subset V$ such that $\left|V^{\prime}\right| \leq K$ and every directed circuit in G includes at least one vertex from V^{\prime}.
5. Prove HITTING STRING is NP-complete:

INSTANCE: An integer n and a set of strings $A \subset\{0,1, \#\}^{n}$.
QUESTION: Is there a string $x \in\{0,1\}^{n}$ such that for each string $a \in A$ there is some $i, 1 \leq i \leq n$, for which the $i^{\text {th }}$ symbol of a and the $i^{\text {th }}$ symbol of x are identical.

For example,

$$
A=\{11 \# 0,0 \# \# \#, \# \# 0 \#, \# \# \# 1,0 \# 1 \#\}
$$

is a positive instance by choosing $x=0101$.

