Problem 1. (80 points) Let A be the language of the regular expression $0^{*} 10 \cup 1^{*} 0$.
(a) Construct an NFA that accepts A.
(b) Determinize your NFA.
(c) Minimize the resulting DFA.
(d) What is the index of A ?
(e) What is the index of the complement of A ?

For part (a), you should follow the algorithm for converting a regular expression to an NFA, but you are allowed to take short-cuts that omit ε-transitions. For part (b), use the subset construction. For part (c), use the minimization algorithm.

Problem 2. (40 points) Let A be the language over the alphabet $\{(),,[]$,$\} that contains all$ balanced strings of parentheses and brackets. For example, $(([]))[] \in A$ and [)$\notin A$.
(a) Give a CFG that generates A.
(b) Give the transition diagram of a PDA that accepts A.

Problem 3. (80 points) For two languages A and B, we define the two languages
$\operatorname{Split}(A, B)=\left\{x_{1} y x_{2} \mid x_{1} x_{2} \in A\right.$ and $\left.y \in B\right\}$
and
$\operatorname{SymSplit}(A, B)=\left\{x_{1} y x_{2} \mid x_{1} x_{2} \in A\right.$ and $y \in B$ and $\left.0 \leq\left|x_{1}\right|-\left|x_{2}\right| \leq 1\right\}$.
For $A=0^{*}$ and $B=1^{*}$, describe $\operatorname{Split}(A, B)$ and $\operatorname{SymSplit}(A, B)$ in words. Then prove or disprove each of the following four statements:
(a) If A and B are regular, then $\operatorname{Split}(A, B)$ is regular.
(b) If A and B are regular, then $\operatorname{Split}(A, B)$ is context-free.
(c) If A and B are regular, then $\operatorname{SymSplit}(A, B)$ is regular.
(d) If A and B are regular, then $\operatorname{SymSplit}(A, B)$ is context-free.

To prove (a), given finite automata that accept A and B, construct a finite automaton that accepts $\operatorname{Split}(A, B)$. To disprove (a), find specific languages A and B for which you can use the pumping lemma for regular languages to show that $\operatorname{Split}(A, B)$ is not regular. To prove (b), given finite automata that accept A and B, construct a pushdown automaton that accepts $\operatorname{Split}(A, B)$. To disprove (b), find specific languages A and B for which you can use the pumping lemma for context-free languages to show that $\operatorname{Split}(A, B)$ is not context-free.

Problem 4. (40 points) Consider the following three languages:

$$
\begin{aligned}
& A_{1}=\{\langle M\rangle \mid M \text { is a Turing machine that halts on at least one input }\} \\
& A_{2}=\{\langle M\rangle \mid M \text { is a Turing machine that halts on at most one input }\} \\
& A_{3}=\{\langle M\rangle \mid M \text { is a Turing machine that halts on exactly one input }\}
\end{aligned}
$$

Which of these languages are recursive, which are r.e., which are co-r.e., and which are neither? You need to justify your answers briefly. You may assume that TmMembership is r.e. but not recursive, TmEmptiness is co-r.e. but not recursive, and TmUniversality is neither r.e. nor co-r.e.

Problem 5. (80 points) Let f be a monotonically increasing computable function from N to N ; that is, $f(n)<f(n+1)$ for all natural numbers $n \in \mathbb{N}$. Let range $(f)=\{y \mid(\exists x) f(x)=y\}$. Prove or disprove each of the following two statements:
(a) range (f) is recursive.
(b) range (f) is r.e.

Let g be any computable function, from Σ^{*} to Σ^{*} for some alphabet Σ. Prove or disprove each of the following two statements:
(c) range (g) is recursive.
(d) range (g) is r.e.

Problem 6. (80 points) A linear inequality has the form

$$
a_{0} x_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n} \leq b
$$

or

$$
a_{0} x_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n} \geq b
$$

where a_{0}, \ldots, a_{n}, b are integer constants, and x_{0}, \ldots, x_{n} are variables. A linear formula combines linear inequalities using the boolean operations of $A N D$, or, and NOT. A linear formula is $\{0,1\}-$ satisfiable if the formula can be made true by assigning to each variable either 0 or 1 . For example, the linear formula

$$
\left(3 x_{0}+2 x_{1} \leq 1 \vee-2 x_{0}+x_{1} \geq 1\right) \wedge x_{0} \leq 0
$$

is $\{0,1\}$-satisfiable (take $x_{0}=0$ and $x_{1}=1$); the linear formula

$$
3 x_{0}+2 x_{1} \leq 2 \wedge x_{0} \geq 1
$$

is not $\{0,1\}$-satisfiable. For each of the following three problems, either prove that the problem is in P, or that it is NP-complete, or that it is not in NP:
(a) Given a disjunction of linear inequalities, is it $\{0,1\}$-satisfiable?
(b) Given a conjunction of linear inequalities, is it $\{0,1\}$-satisfiable?
(c) Given a linear formula, is it $\{0,1\}$-satisfiable?

You need to justify your answers. You may assume that 3Sat, Clique, HamPath, and SubsetSum are NP-complete.

