David Wolfe
Try to keep your answers succinct.

1. (10 points) Let L be regular. As in the homework problem from class, define

$$
\operatorname{ALT}(L)=\left\{a_{1} a_{3} a_{5} \cdots a_{2 n-1}: a_{1} a_{2} a_{3} \cdots a_{2 n} \in L\right\}
$$

If L is given by the regular expression $(110)^{*}$, give a regular expression for $\operatorname{ALT}(L)$.
2. Let L be any infinite language that contains all but a finite number of strings.
(a) (3 points) Give an example of such a language L.
(b) (7 points) Show that any such language, L, is regular.
3. Language L over $\Sigma=\{0,1\}$ is defined by its complement:

$$
\bar{L}=\left\{(01)^{n^{2}}: n \geq 0\right\}
$$

So, typical strings in L include 10,0101 , and 011 , but the strings $\epsilon, 01$ and 01010101 are not in L since 0,1 and 4 are perfect squares.
(a) (5 points) Show the consequence of the pumping lemma holds for L. I.e., prove that $(\exists n)(\forall z \in L$ such that $|z| \geq n)(\exists u v w$ such that $z=u v w$ and $|u v| \leq n$ and $|v| \geq 1)(\forall i): u v^{i} w \in L$
(Remember to consider that i can be 0 .)
(b) (10 points) Despite part (a), prove that L is not regular.

