CS172 Midterm 1 Solutions

Fall 2013

Recall we are always working on the alphabet ¥ = {0,1}.

1. (a) True. L can be written as L = LR N LS. Since the set of regular languages is
under reversal, complement and intersection, Llf and L§ are both regular, and
hence so is L.

(b) False, even for k = 1. There are infinite number of regular languages containing
only 1 string, but there are only finite number of DFAs with at most 2 states, so
some of these languages cannot be recognized by this kind of DFAs.

(c) False. A counterexample:

Let N be
OO
start qo q1
_/
Then N’ will be:

QL
start —

We have L(N) = {e}, L(N') = {0,1} # L(N

(d) False. A counterexample:
Let L; = {01/} for any j > 1. Each L; is regular, since it is finite. But their
union U7, L; = {0/1/|j > 1} is not regular.

2. (a) The DFA is as follows:




When the number of 0’s seen so far — the number of 1’s seen so far = 0, +1 or
—1, this DFA is in state qg, 44+1 or 4_1, all of which are accepting. But as soon
as it sees two more 0’s than 1’s or two more 1’s than 0’s, it will move to state g ¥
and never leave it, and this DFA will reject the input string.

(b) Such DFA does not exist. Here we give two proofs.

Proof 1: Suppose M = (Q,%, 4,490, F) is a DFA with 3 states that accepts L,
where Q = {90,91,92}. Since € € L, we must have gy € F. Then, consider
5(g0,0). It cannot be gy, because otherwise M would accept 00 ¢ L. With-
out loss of generality, we assume 6(go,0) = ¢g1. Since 0 € L, we get g1 € F.
Similarly, (g0, 1) # qo, because otherwise the DFA would accept 11 ¢ L. Now,

i. If 6(q0,1) = g1, then M will end up in the same state after reading 01 and
11, but 01 € L and 11 ¢ L, which is a contradiction;

ii. otherwise, 6(qg,1) = g2. Since 1 € L, we have g € F. Then we get F = Q,
and hence M accepts any string, which is also a contradiction. [

Proof 2: We will use the Myhill-Nerode theorem. Consider the four strings
x1 = 0,x =1, x3 = 01, x4 = 11. We claim that they are pairwise distinguish-

able by L:
i. Letz;y = €, then x;z1 € L, fori = 1,2,3, but x4z1 ¢ L. So x; %1 x4, for
i=1,2,3;
ii. Letzp =0,thenx1zp =00 € L, xpzp =10 € L, x3zp = 010 € L. So x1 %1, X,
forj=2,3;

iii. Letzz =1, then xpz3 = 11 € L, x3z3 = 011 € L. So x5 %} x3.

So the index of L is at least 4. By the Myhill-Nerode theorem, any DFA recog-
nizing L must have at least four states. [

3. Here we give two proofs.

Proof 1(Easy): Since L is regular, let p be the constant promised by the pumping
lemma. Then, since L is infinite, it must contain a string w such that |w| > p. By the
pumping lemma, there exist strings x, y and z such that s = xyz, |y| > 0, |xy| < p,
and xyiz € L,Vi > 0. Now let us define L; = {xyiz|i iseven} C L. Then, L, is
infinite, since |y| > 0. Also, L, is regular, since x(yy)*z is a regular expression for
L;. Now, since both L and L; are regular, we get L \ L; = LN L{ is also regular (by
the closure of regular languages under complement and intersection). Moreover,
L\ L; D {xy'z|i is odd}, and hence L \ L is also infinite. [

Proof 2 (With explicit construction of DFA): Let M = (Q, %, 6, qo, F) be a DFA that
accepts L. Since L is regular, let p be the constant promised by the pumping lemma.
Then, since L is infinite, it must contain a string w such that |w| > p. Then, by the
proof of the pumping lemma, there exists a state 4 € Q such that M has visited g
at least twice when processing w. In fact, the proof also implies that there exist an



infinite sequence of strings vy, vy, ... such that v; € L and M visits g exactly i times
when processing v;. Now we define

L1 = {w|w € L, M visits g an odd number of times when processing w}. (1)
Then L, is infinite (since it contains vy, v3, vs, . ..). Moreover,
L\ L, = {w|w € L, M visits 4 an even number of times when processing w} (2)

is also infinite (since it contains vy, vy, Vg, . . . ). It remains to show thatboth L and L\
L; are regular. We prove this by explicitly constructing the DFAs for them. Consider
M = (Q,%,d,q F), where Q' = Q x {0,1}, g), = (90,0), F' = F x {1}, and

5((p,i),0) = {(w,a),z), ifo(p,a) # q; )
(6(p,a),i® 1), otherwise.

Namely, the first coordinate simulates the computation of M, and the second coordi-

nate records the parity of the number of times M has visited g. Every time M visits g,

the second bit gets flipped. It is easy to see that M’ accepts exactly L;. Furthermore,

if we change F’ into F x {0}, then M’ will accept L \ L; instead. [

. Proof by contradiction. Suppose L is regular. Then let p be the constant promised
by the pumping lemma. Consider s = 02P12P0%. Since s = (0P1707) o (0P1P0P),
s € L. By the pumping lemma, there exist strings x, y, z such that s = xyz, |y| > 0,
xy| < p, and

xyiz €L, Vi>D0. 4)

Now since |xy| < p and |y| > 0, we have y = 0 for some 0 < I < p. Now
consider xy’z = 0%P72/12P0??. We claim that there is no string b such that xy°z =
bob. Suppose otherwise, then the bits in the odd positions of xy°z indicate b =
0P*11P0P, but the bits in the even positions of x3z indicate b = 07170+, which is a
contradiction. So xy3z ¢ L, which contradicts (4). Thus, L is not regular.

. Let M = (Q,%,4,90, F) be a DFA recognizing L. We will construct an NFA N =
(Q,%,8, 4}, F') recognizing L'/2. The basic idea is that we replace the states in Q
by the tuples in Q x Q, where the first coordinate goes forward and the second
coordinate goes backward. Formally, define f : Q — Q and g: Q — Q as follows

flg)={peQlFack st.p=25(ga)} (5)
g(q)={pe€QFaeck st.q=0(pa)}

(Namely, f(q) consists of the states that can be reached from g in one step, while
g(q) consists of the states that can reach ¢ in one step.) Then, let g, be a special state,
and let

Q' = {90} U(QxQ);



F={(pg)ecQxQlp=qorqge f(p)}
&'((p,q),a) = {(0(p,a),1)|r €g(a)}, Vp.geQ;
&'(q0,€) = {(qo,7)Ir € F};

8'(s,b) = @, for other (s,b) € Q x L.

Claim 1: If x € L, then x'/2 € L(N).

Proof: Suppose x = x1x;...x, where x; € .. Let rg = qo, 71, ..., 74 be the sequence
of state M has gone through when processing x. Since x € L, we have r, € F.
Now, consider the following computation of N on x!/2: starting from g}, it jumps
to (qo, rn) via e-transition. Then, on reading x1, it moves to (r1,7,_1). This is valid,
since 71 = 6(qo, x1) and r,_1 € g(r,). Then, on reading xp, it moves to (ry,7,—2), and
this is valid too. Continue this procedure, until we have consumed all of x'/2. Now
N is in the state (r|,,/2|,7|n/2)) if 7 is even, or (r|,,/2|,7n/2)41) if 7 is odd. Either

way, it is in F’ by our definition. Hence, x'/2 is accepted by N. O

Claim 2: If y € L(N), theny € L'/2.
Proof: Suppose y = y1y2...ym where y; € X. By our definition, y € L(N) implies
that there exist (rg,s0), (r1,51), - - -, (rm,5m) € Q X Q, such that
e 70 =4qo, 5 € F;
7’]‘ = 5(7’]'—1/%‘)/ V1 S ] S m;
sj € g(sj—1),ie. Iz € X, st 511 =6(s),2j), V1 < j < m.

Either 1y = sy, or sy € f(rm),1e. Iz € Z, s.t. 5y = (1, 2).

Now consider the behavior of M on the string ¥’ = y1y2 ... YmZmzm—1-..21 if 1y =
Sm, OT Y = Y1Yo ... YmZZmZy_1 - .. 21 otherwise (where the zj’s and z are defined as
above). We can see that M would gone through the sequence of states: qo, 1,72, .. .,
Tm = Sms Sm—1,Sm—2, ---,50 € Forqo, r1, 12, ..., "'m, Sm, Sm—1, Sm—2, - - ., So € F. Either
way, it ends up in an accept state. Soy’ € L,and y = (y')!/2 € LV/2. O

Remark: You do not need to give this formal proof in the exam. A high-level expla-
nation should suffice.



