CS172 Midterm 1 Solutions

Fall 2013

Recall we are always working on the alphabet $\Sigma = \{0, 1\}$.

- 1. (a) True. *L* can be written as $L = L_1^R \cap L_2^c$. Since the set of regular languages is under reversal, complement and intersection, L_1^R and L_2^c are both regular, and hence so is *L*.
 - (b) False, even for k = 1. There are infinite number of regular languages containing only 1 string, but there are only finite number of DFAs with at most 2 states, so some of these languages cannot be recognized by this kind of DFAs.
 - (c) False. A counterexample: Let *N* be

start
$$\rightarrow q_0 \xrightarrow{0,1} q_1$$

Then N' will be:

start
$$\rightarrow q_0 \xrightarrow{0,1} q_1$$

We have $L(N) = \{\epsilon\}, L(N') = \{0, 1\} \neq L(N)^c$.

- (d) False. A counterexample: Let $L_j = \{0^{j}1^{j}\}$ for any $j \ge 1$. Each L_j is regular, since it is finite. But their union $\bigcup_{j=1}^{\infty} L_j = \{0^{j}1^{j} | j \ge 1\}$ is not regular.
- 2. (a) The DFA is as follows:

When the number of 0's seen so far – the number of 1's seen so far = 0, +1 or –1, this DFA is in state q_0 , q_{+1} or q_{-1} , all of which are accepting. But as soon as it sees two more 0's than 1's or two more 1's than 0's, it will move to state q_f and never leave it, and this DFA will reject the input string.

(b) Such DFA does not exist. Here we give two proofs.

Proof 1: Suppose $M = (Q, \Sigma, \delta, q_0, F)$ is a DFA with 3 states that accepts L, where $Q = \{q_0, q_1, q_2\}$. Since $\epsilon \in L$, we must have $q_0 \in F$. Then, consider $\delta(q_0, 0)$. It cannot be q_0 , because otherwise M would accept $00 \notin L$. Without loss of generality, we assume $\delta(q_0, 0) = q_1$. Since $0 \in L$, we get $q_1 \in F$. Similarly, $\delta(q_0, 1) \neq q_0$, because otherwise the DFA would accept $11 \notin L$. Now,

- i. If $\delta(q_0, 1) = q_1$, then *M* will end up in the same state after reading 01 and 11, but $01 \in L$ and $11 \notin L$, which is a contradiction;
- ii. otherwise, $\delta(q_0, 1) = q_2$. Since $1 \in L$, we have $q_2 \in F$. Then we get F = Q, and hence *M* accepts any string, which is also a contradiction. \Box

Proof 2: We will use the Myhill-Nerode theorem. Consider the four strings $x_1 = 0$, $x_2 = 1$, $x_3 = 01$, $x_4 = 11$. We claim that they are pairwise distinguishable by *L*:

- i. Let $z_1 = \epsilon$, then $x_i z_1 \in L$, for i = 1, 2, 3, but $x_4 z_1 \notin L$. So $x_i \not\sim_L x_4$, for i = 1, 2, 3;
- ii. Let $z_2 = 0$, then $x_1 z_2 = 00 \notin L$, $x_2 z_2 = 10 \in L$, $x_3 z_2 = 010 \in L$. So $x_1 \not\sim_L x_j$, for j = 2, 3;
- iii. Let $z_3 = 1$, then $x_2 z_3 = 11 \notin L$, $x_3 z_3 = 011 \in L$. So $x_2 \not\sim_L x_3$.

So the index of *L* is at least 4. By the Myhill-Nerode theorem, any DFA recognizing *L* must have at least four states. \Box

3. Here we give two proofs.

Proof 1(Easy): Since *L* is regular, let *p* be the constant promised by the pumping lemma. Then, since *L* is infinite, it must contain a string *w* such that |w| > p. By the pumping lemma, there exist strings *x*, *y* and *z* such that s = xyz, |y| > 0, $|xy| \le p$, and $xy^iz \in L$, $\forall i \ge 0$. Now let us define $L_1 = \{xy^iz|i \text{ is even}\} \subseteq L$. Then, L_1 is infinite, since |y| > 0. Also, L_1 is regular, since $x(yy)^*z$ is a regular expression for L_1 . Now, since both *L* and L_1 are regular, we get $L \setminus L_1 = L \cap L_1^c$ is also regular (by the closure of regular languages under complement and intersection). Moreover, $L \setminus L_1 \supseteq \{xy^iz|i \text{ is odd}\}$, and hence $L \setminus L_1$ is also infinite. \Box

Proof 2 (With explicit construction of DFA): Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA that accepts *L*. Since *L* is regular, let *p* be the constant promised by the pumping lemma. Then, since *L* is infinite, it must contain a string *w* such that |w| > p. Then, by the proof of the pumping lemma, there exists a state $q \in Q$ such that *M* has visited *q* at least twice when processing *w*. In fact, the proof also implies that there exist an

infinite sequence of strings $v_1, v_2, ...$ such that $v_i \in L$ and M visits q exactly i times when processing v_i . Now we define

$$L_1 = \{w | w \in L, M \text{ visits } q \text{ an odd number of times when processing } w\}.$$
 (1)

Then L_1 is infinite (since it contains $v_1, v_3, v_5, ...$). Moreover,

$$L \setminus L_1 = \{w | w \in L, M \text{ visits } q \text{ an even number of times when processing } w\}$$
 (2)

is also infinite (since it contains $v_2, v_4, v_6, ...$). It remains to show that both L_1 and $L \setminus L_1$ are regular. We prove this by explicitly constructing the DFAs for them. Consider $M' = (Q', \Sigma, \delta', q'_0, F')$, where $Q' = Q \times \{0, 1\}$, $q'_0 = (q_0, 0)$, $F' = F \times \{1\}$, and

$$\delta'((p,i),a) = \begin{cases} (\delta(p,a),i), & \text{if } \delta(p,a) \neq q; \\ (\delta(p,a),i \oplus 1), & \text{otherwise.} \end{cases}$$
(3)

Namely, the first coordinate simulates the computation of M, and the second coordinate records the parity of the number of times M has visited q. Every time M visits q, the second bit gets flipped. It is easy to see that M' accepts exactly L_1 . Furthermore, if we change F' into $F \times \{0\}$, then M' will accept $L \setminus L_1$ instead. \Box

4. Proof by contradiction. Suppose *L* is regular. Then let *p* be the constant promised by the pumping lemma. Consider $s = 0^{2p}1^{2p}0^{2p}$. Since $s = (0^p1^p0^p) \circ (0^p1^p0^p)$, $s \in L$. By the pumping lemma, there exist strings *x*, *y*, *z* such that s = xyz, |y| > 0, $|xy| \le p$, and

$$xy^i z \in L, \ \forall i \ge 0. \tag{4}$$

Now since $|xy| \le p$ and |y| > 0, we have $y = 0^l$ for some $0 < l \le p$. Now consider $xy^3z = 0^{2p+2l}1^{2p}0^{2p}$. We claim that there is no string *b* such that $xy^3z = b \circ b$. Suppose otherwise, then the bits in the odd positions of xy^3z indicate $b = 0^{p+l}1^p0^p$, but the bits in the even positions of xy^3z indicate $b = 0^p1^p0^{p+l}$, which is a contradiction. So $xy^3z \notin L$, which contradicts (4). Thus, *L* is not regular.

5. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing *L*. We will construct an NFA $N = (Q', \Sigma, \delta', q'_0, F')$ recognizing $L^{1/2}$. The basic idea is that we replace the states in *Q* by the tuples in $Q \times Q$, where the first coordinate goes forward and the second coordinate goes backward. Formally, define $f : Q \to Q$ and $g : Q \to Q$ as follows

$$f(q) = \{ p \in Q | \exists a \in \Sigma, s.t. p = \delta(q, a) \},\ g(q) = \{ p \in Q | \exists a \in \Sigma, s.t. q = \delta(p, a) \}.$$
(5)

(Namely, f(q) consists of the states that can be reached from q in one step, while g(q) consists of the states that can reach q in one step.) Then, let q'_0 be a special state, and let

$$Q' = \{q'_0\} \cup (Q \times Q);$$

$$F' = \{(p,q) \in Q \times Q | p = q \text{ or } q \in f(p)\};$$

$$\delta'((p,q),a) = \{(\delta(p,a),r) | r \in g(q)\}, \quad \forall p,q \in Q;$$

$$\delta'(q'_0,\epsilon) = \{(q_0,r) | r \in F\};$$

$$\delta'(s,b) = \emptyset, \text{ for other } (s,b) \in Q \times \Sigma_{\epsilon}.$$

Claim 1: If $x \in L$, then $x^{1/2} \in L(N)$.

Proof: Suppose $x = x_1x_2...x_n$ where $x_j \in \Sigma$. Let $r_0 = q_0, r_1, ..., r_n$ be the sequence of state *M* has gone through when processing *x*. Since $x \in L$, we have $r_n \in F$. Now, consider the following computation of *N* on $x^{1/2}$: starting from q'_0 , it jumps to (q_0, r_n) via ϵ -transition. Then, on reading x_1 , it moves to (r_1, r_{n-1}) . This is valid, since $r_1 = \delta(q_0, x_1)$ and $r_{n-1} \in g(r_n)$. Then, on reading x_2 , it moves to (r_2, r_{n-2}) , and this is valid too. Continue this procedure, until we have consumed all of $x^{1/2}$. Now *N* is in the state $(r_{\lfloor n/2 \rfloor}, r_{\lfloor n/2 \rfloor})$ if *n* is even, or $(r_{\lfloor n/2 \rfloor}, r_{\lfloor n/2 \rfloor+1})$ if *n* is odd. Either way, it is in *F'* by our definition. Hence, $x^{1/2}$ is accepted by *N*.

Claim 2: If $y \in L(N)$, then $y \in L^{1/2}$.

Proof: Suppose $y = y_1y_2...y_m$ where $y_j \in \Sigma$. By our definition, $y \in L(N)$ implies that there exist $(r_0, s_0), (r_1, s_1), ..., (r_m, s_m) \in Q \times Q$, such that

- $r_0 = q_0, s_0 \in F;$
- $r_j = \delta(r_{j-1}, y_j), \forall 1 \le j \le m;$
- $s_j \in g(s_{j-1})$, i.e. $\exists z_j \in \Sigma$, s.t. $s_{j-1} = \delta(s_j, z_j)$, $\forall 1 \le j \le m$.
- Either $r_m = s_m$, or $s_m \in f(r_m)$, i.e. $\exists z \in \Sigma$, s.t. $s_m = \delta(r_m, z)$.

Now consider the behavior of M on the string $y' = y_1y_2...y_mz_mz_{m-1}...z_1$ if $r_m = s_m$, or $y' = y_1y_2...y_mz_zz_mz_{m-1}...z_1$ otherwise (where the z_j 's and z are defined as above). We can see that M would gone through the sequence of states: $q_0, r_1, r_2, ..., r_m = s_m, s_{m-1}, s_{m-2}, ..., s_0 \in F$ or $q_0, r_1, r_2, ..., r_m, s_m, s_{m-1}, s_{m-2}, ..., s_0 \in F$. Either way, it ends up in an accept state. So $y' \in L$, and $y = (y')^{1/2} \in L^{1/2}$.

Remark: You do not need to give this formal proof in the exam. A high-level explanation should suffice.