CS172 Midterm 1 Solutions

Fall 2013

Recall we are always working on the alphabet $\Sigma=\{0,1\}$.

1. (a) True. L can be written as $L=L_{1}^{R} \cap L_{2}^{c}$. Since the set of regular languages is under reversal, complement and intersection, L_{1}^{R} and L_{2}^{c} are both regular, and hence so is L.
(b) False, even for $k=1$. There are infinite number of regular languages containing only 1 string, but there are only finite number of DFAs with at most 2 states, so some of these languages cannot be recognized by this kind of DFAs.
(c) False. A counterexample:

Let N be

Then N^{\prime} will be:

We have $L(N)=\{\epsilon\}, L\left(N^{\prime}\right)=\{0,1\} \neq L(N)^{c}$.
(d) False. A counterexample:

Let $L_{j}=\left\{0^{j} 1^{j}\right\}$ for any $j \geq 1$. Each L_{j} is regular, since it is finite. But their union $\cup_{j=1}^{\infty} L_{j}=\left\{0^{j} 1^{j} \mid j \geq 1\right\}$ is not regular.
2. (a) The DFA is as follows:

When the number of 0 's seen so far - the number of 1 's seen so far $=0,+1$ or -1 , this DFA is in state q_{0}, q_{+1} or q_{-1}, all of which are accepting. But as soon as it sees two more 0's than 1's or two more 1's than 0's, it will move to state q_{f} and never leave it, and this DFA will reject the input string.
(b) Such DFA does not exist. Here we give two proofs.

Proof 1: Suppose $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA with 3 states that accepts L, where $Q=\left\{q_{0}, q_{1}, q_{2}\right\}$. Since $\epsilon \in L$, we must have $q_{0} \in F$. Then, consider $\delta\left(q_{0}, 0\right)$. It cannot be q_{0}, because otherwise M would accept $00 \notin L$. Without loss of generality, we assume $\delta\left(q_{0}, 0\right)=q_{1}$. Since $0 \in L$, we get $q_{1} \in F$. Similarly, $\delta\left(q_{0}, 1\right) \neq q_{0}$, because otherwise the DFA would accept $11 \notin L$. Now,
i. If $\delta\left(q_{0}, 1\right)=q_{1}$, then M will end up in the same state after reading 01 and 11 , but $01 \in L$ and $11 \notin L$, which is a contradiction;
ii. otherwise, $\delta\left(q_{0}, 1\right)=q_{2}$. Since $1 \in L$, we have $q_{2} \in F$. Then we get $F=Q$, and hence M accepts any string, which is also a contradiction.
Proof 2: We will use the Myhill-Nerode theorem. Consider the four strings $x_{1}=0, x_{2}=1, x_{3}=01, x_{4}=11$. We claim that they are pairwise distinguishable by L :
i. Let $z_{1}=\epsilon$, then $x_{i} z_{1} \in L$, for $i=1,2,3$, but $x_{4} z_{1} \notin L$. So $x_{i} \not \chi_{L} x_{4}$, for $i=1,2,3$;
ii. Let $z_{2}=0$, then $x_{1} z_{2}=00 \notin L, x_{2} z_{2}=10 \in L, x_{3} z_{2}=010 \in L$. So $x_{1} \not \chi_{L} x_{j}$, for $j=2,3$;
iii. Let $z_{3}=1$, then $x_{2} z_{3}=11 \notin L, x_{3} z_{3}=011 \in L$. So $x_{2} \not \chi_{L} x_{3}$.

So the index of L is at least 4. By the Myhill-Nerode theorem, any DFA recognizing L must have at least four states.
3. Here we give two proofs.

Proof 1(Easy): Since L is regular, let p be the constant promised by the pumping lemma. Then, since L is infinite, it must contain a string w such that $|w|>p$. By the pumping lemma, there exist strings x, y and z such that $s=x y z,|y|>0,|x y| \leq p$, and $x y^{i} z \in L, \forall i \geq 0$. Now let us define $L_{1}=\left\{x y^{i} z \mid i\right.$ is even $\} \subseteq L$. Then, L_{1} is infinite, since $|y|>0$. Also, L_{1} is regular, since $x(y y)^{*} z$ is a regular expression for L_{1}. Now, since both L and L_{1} are regular, we get $L \backslash L_{1}=L \cap L_{1}^{c}$ is also regular (by the closure of regular languages under complement and intersection). Moreover, $L \backslash L_{1} \supseteq\left\{x y^{i} z \mid i\right.$ is odd $\}$, and hence $L \backslash L_{1}$ is also infinite.

Proof 2 (With explicit construction of DFA): Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA that accepts L. Since L is regular, let p be the constant promised by the pumping lemma. Then, since L is infinite, it must contain a string w such that $|w|>p$. Then, by the proof of the pumping lemma, there exists a state $q \in Q$ such that M has visited q at least twice when processing w. In fact, the proof also implies that there exist an
infinite sequence of strings v_{1}, v_{2}, \ldots such that $v_{i} \in L$ and M visits q exactly i times when processing v_{i}. Now we define

$$
\begin{equation*}
L_{1}=\{w \mid w \in L, M \text { visits } q \text { an odd number of times when processing } w\} \tag{1}
\end{equation*}
$$

Then L_{1} is infinite (since it contains $v_{1}, v_{3}, v_{5}, \ldots$). Moreover,

$$
\begin{equation*}
L \backslash L_{1}=\{w \mid w \in L, M \text { visits } q \text { an even number of times when processing } w\} \tag{2}
\end{equation*}
$$

is also infinite (since it contains $v_{2}, v_{4}, v_{6}, \ldots$). It remains to show that both L_{1} and $L \backslash$ L_{1} are regular. We prove this by explicitly constructing the DFAs for them. Consider $M^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, where $Q^{\prime}=Q \times\{0,1\}, q_{0}^{\prime}=\left(q_{0}, 0\right), F^{\prime}=F \times\{1\}$, and

$$
\delta^{\prime}((p, i), a)= \begin{cases}(\delta(p, a), i), & \text { if } \delta(p, a) \neq q \tag{3}\\ (\delta(p, a), i \oplus 1), & \text { otherwise }\end{cases}
$$

Namely, the first coordinate simulates the computation of M, and the second coordinate records the parity of the number of times M has visited q. Every time M visits q, the second bit gets flipped. It is easy to see that M^{\prime} accepts exactly L_{1}. Furthermore, if we change F^{\prime} into $F \times\{0\}$, then M^{\prime} will accept $L \backslash L_{1}$ instead.
4. Proof by contradiction. Suppose L is regular. Then let p be the constant promised by the pumping lemma. Consider $s=0^{2 p} 1^{2 p} 0^{2 p}$. Since $s=\left(0^{p} 1^{p} 0^{p}\right) \circ\left(0^{p} 1^{p} 0^{p}\right)$, $s \in L$. By the pumping lemma, there exist strings x, y, z such that $s=x y z,|y|>0$, $|x y| \leq p$, and

$$
\begin{equation*}
x y^{i} z \in L, \forall i \geq 0 \tag{4}
\end{equation*}
$$

Now since $|x y| \leq p$ and $|y|>0$, we have $y=0^{l}$ for some $0<l \leq p$. Now consider $x y^{3} z=0^{2 p+2 l} 1^{2 p} 0^{2 p}$. We claim that there is no string b such that $x y^{3} z=$ $b \circ b$. Suppose otherwise, then the bits in the odd positions of $x y^{3} z$ indicate $b=$ $0^{p+l} 1^{p} 0^{p}$, but the bits in the even positions of $x y^{3} z$ indicate $b=0^{p} 1^{p} 0^{p+l}$, which is a contradiction. So $x y^{3} z \notin L$, which contradicts (4). Thus, L is not regular.
5. Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA recognizing L. We will construct an NFA $N=$ $\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ recognizing $L^{1 / 2}$. The basic idea is that we replace the states in Q by the tuples in $Q \times Q$, where the first coordinate goes forward and the second coordinate goes backward. Formally, define $f: Q \rightarrow Q$ and $g: Q \rightarrow Q$ as follows

$$
\begin{align*}
& f(q)=\{p \in Q \mid \exists a \in \Sigma, \text { s.t. } p=\delta(q, a)\} \\
& g(q)=\{p \in Q \mid \exists a \in \Sigma, \text { s.t. } q=\delta(p, a)\} . \tag{5}
\end{align*}
$$

(Namely, $f(q)$ consists of the states that can be reached from q in one step, while $g(q)$ consists of the states that can reach q in one step.) Then, let q_{0}^{\prime} be a special state, and let

$$
Q^{\prime}=\left\{q_{0}^{\prime}\right\} \cup(Q \times Q)
$$

$$
\begin{gathered}
F^{\prime}=\{(p, q) \in Q \times Q \mid p=q \text { or } q \in f(p)\} ; \\
\delta^{\prime}((p, q), a)=\{(\delta(p, a), r) \mid r \in g(q)\}, \forall p, q \in Q ; \\
\delta^{\prime}\left(q_{0}^{\prime}, \epsilon\right)=\left\{\left(q_{0}, r\right) \mid r \in F\right\} ; \\
\delta^{\prime}(s, b)=\varnothing, \text { for other }(s, b) \in Q \times \Sigma_{\epsilon} .
\end{gathered}
$$

Claim 1: If $x \in L$, then $x^{1 / 2} \in L(N)$.
Proof: Suppose $x=x_{1} x_{2} \ldots x_{n}$ where $x_{j} \in \Sigma$. Let $r_{0}=q_{0}, r_{1}, \ldots, r_{n}$ be the sequence of state M has gone through when processing x. Since $x \in L$, we have $r_{n} \in F$. Now, consider the following computation of N on $x^{1 / 2}$: starting from q_{0}^{\prime}, it jumps to $\left(q_{0}, r_{n}\right)$ via ϵ-transition. Then, on reading x_{1}, it moves to $\left(r_{1}, r_{n-1}\right)$. This is valid, since $r_{1}=\delta\left(q_{0}, x_{1}\right)$ and $r_{n-1} \in g\left(r_{n}\right)$. Then, on reading x_{2}, it moves to $\left(r_{2}, r_{n-2}\right)$, and this is valid too. Continue this procedure, until we have consumed all of $x^{1 / 2}$. Now N is in the state $\left(r_{\lfloor n / 2\rfloor}, r_{\lfloor n / 2\rfloor}\right)$ if n is even, or $\left(r_{\lfloor n / 2\rfloor}, r_{\lfloor n / 2\rfloor+1}\right)$ if n is odd. Either way, it is in F^{\prime} by our definition. Hence, $x^{1 / 2}$ is accepted by N.
Claim 2: If $y \in L(N)$, then $y \in L^{1 / 2}$.
Proof: Suppose $y=y_{1} y_{2} \ldots y_{m}$ where $y_{j} \in \Sigma$. By our definition, $y \in L(N)$ implies that there exist $\left(r_{0}, s_{0}\right),\left(r_{1}, s_{1}\right), \ldots,\left(r_{m}, s_{m}\right) \in Q \times Q$, such that

- $r_{0}=q_{0}, s_{0} \in F ;$
- $r_{j}=\delta\left(r_{j-1}, y_{j}\right), \forall 1 \leq j \leq m$;
- $s_{j} \in g\left(s_{j-1}\right)$, i.e. $\exists z_{j} \in \Sigma$, s.t. $s_{j-1}=\delta\left(s_{j}, z_{j}\right), \forall 1 \leq j \leq m$.
- Either $r_{m}=s_{m}$, or $s_{m} \in f\left(r_{m}\right)$, i.e. $\exists z \in \Sigma$, s.t. $s_{m}=\delta\left(r_{m}, z\right)$.

Now consider the behavior of M on the string $y^{\prime}=y_{1} y_{2} \ldots y_{m} z_{m} z_{m-1} \ldots z_{1}$ if $r_{m}=$ s_{m}, or $y^{\prime}=y_{1} y_{2} \ldots y_{m} z z_{m} z_{m-1} \ldots z_{1}$ otherwise (where the z_{j}^{\prime} 's and z are defined as above). We can see that M would gone through the sequence of states: $q_{0}, r_{1}, r_{2}, \ldots$, $r_{m}=s_{m}, s_{m-1}, s_{m-2}, \ldots, s_{0} \in F$ or $q_{0}, r_{1}, r_{2}, \ldots, r_{m}, s_{m}, s_{m-1}, s_{m-2}, \ldots, s_{0} \in F$. Either way, it ends up in an accept state. So $y^{\prime} \in L$, and $y=\left(y^{\prime}\right)^{1 / 2} \in L^{1 / 2}$.
Remark: You do not need to give this formal proof in the exam. A high-level explanation should suffice.

