
CS172 Midterm 1 Solutions

Fall 2013

Recall we are always working on the alphabet Σ = {0, 1}.

1. (a) True. L can be written as L = LR
1 ∩ Lc

2. Since the set of regular languages is
under reversal, complement and intersection, LR

1 and Lc
2 are both regular, and

hence so is L.

(b) False, even for k = 1. There are infinite number of regular languages containing
only 1 string, but there are only finite number of DFAs with at most 2 states, so
some of these languages cannot be recognized by this kind of DFAs.

(c) False. A counterexample:
Let N be

q0start q1
0, 1

Then N′ will be:

q0start q1
0, 1

We have L(N) = {ε}, L(N′) = {0, 1} 6= L(N)c.

(d) False. A counterexample:
Let Lj = {0j1j} for any j ≥ 1. Each Lj is regular, since it is finite. But their
union ∪∞

j=1Lj = {0j1j|j ≥ 1} is not regular.

2. (a) The DFA is as follows:

q0start q+1

q−1 q f

0

1
1

00

1
0, 1
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When the number of 0’s seen so far − the number of 1’s seen so far = 0, +1 or
−1, this DFA is in state q0, q+1 or q−1, all of which are accepting. But as soon
as it sees two more 0’s than 1’s or two more 1’s than 0’s, it will move to state q f
and never leave it, and this DFA will reject the input string.

(b) Such DFA does not exist. Here we give two proofs.
Proof 1: Suppose M = (Q, Σ, δ, q0, F) is a DFA with 3 states that accepts L,
where Q = {q0, q1, q2}. Since ε ∈ L, we must have q0 ∈ F. Then, consider
δ(q0, 0). It cannot be q0, because otherwise M would accept 00 6∈ L. With-
out loss of generality, we assume δ(q0, 0) = q1. Since 0 ∈ L, we get q1 ∈ F.
Similarly, δ(q0, 1) 6= q0, because otherwise the DFA would accept 11 6∈ L. Now,

i. If δ(q0, 1) = q1, then M will end up in the same state after reading 01 and
11, but 01 ∈ L and 11 6∈ L, which is a contradiction;

ii. otherwise, δ(q0, 1) = q2. Since 1 ∈ L, we have q2 ∈ F. Then we get F = Q,
and hence M accepts any string, which is also a contradiction.

Proof 2: We will use the Myhill-Nerode theorem. Consider the four strings
x1 = 0, x2 = 1, x3 = 01, x4 = 11. We claim that they are pairwise distinguish-
able by L:

i. Let z1 = ε, then xiz1 ∈ L, for i = 1, 2, 3, but x4z1 6∈ L. So xi 6∼L x4, for
i = 1, 2, 3;

ii. Let z2 = 0, then x1z2 = 00 6∈ L, x2z2 = 10 ∈ L, x3z2 = 010 ∈ L. So x1 6∼L xj,
for j = 2, 3;

iii. Let z3 = 1, then x2z3 = 11 6∈ L, x3z3 = 011 ∈ L. So x2 6∼L x3.

So the index of L is at least 4. By the Myhill-Nerode theorem, any DFA recog-
nizing L must have at least four states.

3. Here we give two proofs.

Proof 1(Easy): Since L is regular, let p be the constant promised by the pumping
lemma. Then, since L is infinite, it must contain a string w such that |w| > p. By the
pumping lemma, there exist strings x, y and z such that s = xyz, |y| > 0, |xy| ≤ p,
and xyiz ∈ L, ∀i ≥ 0. Now let us define L1 = {xyiz|i is even} ⊆ L. Then, L1 is
infinite, since |y| > 0. Also, L1 is regular, since x(yy)∗z is a regular expression for
L1. Now, since both L and L1 are regular, we get L \ L1 = L ∩ Lc

1 is also regular (by
the closure of regular languages under complement and intersection). Moreover,
L \ L1 ⊇ {xyiz|i is odd}, and hence L \ L1 is also infinite.

Proof 2 (With explicit construction of DFA): Let M = (Q, Σ, δ, q0, F) be a DFA that
accepts L. Since L is regular, let p be the constant promised by the pumping lemma.
Then, since L is infinite, it must contain a string w such that |w| > p. Then, by the
proof of the pumping lemma, there exists a state q ∈ Q such that M has visited q
at least twice when processing w. In fact, the proof also implies that there exist an
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infinite sequence of strings v1, v2, . . . such that vi ∈ L and M visits q exactly i times
when processing vi. Now we define

L1 = {w|w ∈ L, M visits q an odd number of times when processing w}. (1)

Then L1 is infinite (since it contains v1, v3, v5, . . . ). Moreover,

L \ L1 = {w|w ∈ L, M visits q an even number of times when processing w} (2)

is also infinite (since it contains v2, v4, v6, . . . ). It remains to show that both L1 and L \
L1 are regular. We prove this by explicitly constructing the DFAs for them. Consider
M′ = (Q′, Σ, δ′, q′0, F′), where Q′ = Q× {0, 1}, q′0 = (q0, 0), F′ = F× {1}, and

δ′((p, i), a) =

{
(δ(p, a), i), if δ(p, a) 6= q;
(δ(p, a), i⊕ 1), otherwise.

(3)

Namely, the first coordinate simulates the computation of M, and the second coordi-
nate records the parity of the number of times M has visited q. Every time M visits q,
the second bit gets flipped. It is easy to see that M′ accepts exactly L1. Furthermore,
if we change F′ into F× {0}, then M′ will accept L \ L1 instead.

4. Proof by contradiction. Suppose L is regular. Then let p be the constant promised
by the pumping lemma. Consider s = 02p12p02p. Since s = (0p1p0p) ◦ (0p1p0p),
s ∈ L. By the pumping lemma, there exist strings x, y, z such that s = xyz, |y| > 0,
|xy| ≤ p, and

xyiz ∈ L, ∀i ≥ 0. (4)

Now since |xy| ≤ p and |y| > 0, we have y = 0l for some 0 < l ≤ p. Now
consider xy3z = 02p+2l12p02p. We claim that there is no string b such that xy3z =
b ◦ b. Suppose otherwise, then the bits in the odd positions of xy3z indicate b =
0p+l1p0p, but the bits in the even positions of xy3z indicate b = 0p1p0p+l, which is a
contradiction. So xy3z 6∈ L, which contradicts (4). Thus, L is not regular.

5. Let M = (Q, Σ, δ, q0, F) be a DFA recognizing L. We will construct an NFA N =
(Q′, Σ, δ′, q′0, F′) recognizing L1/2. The basic idea is that we replace the states in Q
by the tuples in Q × Q, where the first coordinate goes forward and the second
coordinate goes backward. Formally, define f : Q→ Q and g : Q→ Q as follows

f (q) = {p ∈ Q|∃a ∈ Σ, s.t. p = δ(q, a)},
g(q) = {p ∈ Q|∃a ∈ Σ, s.t. q = δ(p, a)}. (5)

(Namely, f (q) consists of the states that can be reached from q in one step, while
g(q) consists of the states that can reach q in one step.) Then, let q′0 be a special state,
and let

Q′ = {q′0} ∪ (Q×Q);
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F′ = {(p, q) ∈ Q×Q|p = q or q ∈ f (p)};
δ′((p, q), a) = {(δ(p, a), r)|r ∈ g(q)}, ∀p, q ∈ Q;

δ′(q′0, ε) = {(q0, r)|r ∈ F};
δ′(s, b) = ∅, for other (s, b) ∈ Q× Σε.

Claim 1: If x ∈ L, then x1/2 ∈ L(N).
Proof: Suppose x = x1x2 . . . xn where xj ∈ Σ. Let r0 = q0, r1, . . . , rn be the sequence
of state M has gone through when processing x. Since x ∈ L, we have rn ∈ F.
Now, consider the following computation of N on x1/2: starting from q′0, it jumps
to (q0, rn) via ε-transition. Then, on reading x1, it moves to (r1, rn−1). This is valid,
since r1 = δ(q0, x1) and rn−1 ∈ g(rn). Then, on reading x2, it moves to (r2, rn−2), and
this is valid too. Continue this procedure, until we have consumed all of x1/2. Now
N is in the state (rbn/2c, rbn/2c) if n is even, or (rbn/2c, rbn/2c+1) if n is odd. Either
way, it is in F′ by our definition. Hence, x1/2 is accepted by N.

Claim 2: If y ∈ L(N), then y ∈ L1/2.
Proof: Suppose y = y1y2 . . . ym where yj ∈ Σ. By our definition, y ∈ L(N) implies
that there exist (r0, s0), (r1, s1), . . . , (rm, sm) ∈ Q×Q, such that

• r0 = q0, s0 ∈ F;

• rj = δ(rj−1, yj), ∀1 ≤ j ≤ m;

• sj ∈ g(sj−1), i.e. ∃zj ∈ Σ, s.t. sj−1 = δ(sj, zj), ∀1 ≤ j ≤ m.

• Either rm = sm, or sm ∈ f (rm), i.e. ∃z ∈ Σ, s.t. sm = δ(rm, z).

Now consider the behavior of M on the string y′ = y1y2 . . . ymzmzm−1 . . . z1 if rm =
sm, or y′ = y1y2 . . . ymzzmzm−1 . . . z1 otherwise (where the zj’s and z are defined as
above). We can see that M would gone through the sequence of states: q0, r1, r2, . . . ,
rm = sm, sm−1, sm−2, . . . , s0 ∈ F or q0, r1, r2, . . . , rm, sm, sm−1, sm−2, . . . , s0 ∈ F. Either
way, it ends up in an accept state. So y′ ∈ L, and y = (y′)1/2 ∈ L1/2.

Remark: You do not need to give this formal proof in the exam. A high-level expla-
nation should suffice.
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