CS 164, Spring 1993 Midterm \#1 Professor Rowe

Problem \#1 (10 points; 1 point each)

Circle T or F to indicate the true or false statements.

T
F
F The following grammar is ambiguous.

$$
\begin{aligned}
& \text { S-->SaS } \\
& \text { S-->SbS } \\
& \text { S-->c }
\end{aligned}
$$

T F It is possible to build a deterministic finite state automation for the language $\left\{a^{*} b^{*}\right\}$ with only two states.

T F We use a scanner to convert characters to tokens rather than having the parser do the conversion because it simplifies the parser and leads to smaller, more time efficient compilers.

T F A sentential form is a string of terminals and non-terminals that can be derived from the distinguished start symbol.

T
F In OO93, two routines can have the same name or identifier.

T F In constructing a compiler, it is a good idea to use a program, like flex or lex, because it simplifies the coding of a scanner.

T F A shared library contains code that can be shared by several processes running different programs.

T

T F All objects in OO93 contain a pointer to an object that represents the class of the object.

T F A grammar is a representation for a possibly infinite set of sentences.

Problem \#2 (15 points)

(b) (5 points) A possible definition for a floating point BINARY number input format is the following: an optional + or - sign followed by a string of zero or more 0 's or 1's followed by a decimal point followed by a string of one or
more 0's or 1's.

Some valid numbers in this format are: +. 10.01 -101.0.0
Some invalid numbers are: 1. -110
Show a finite state automation that will recognize BINARY floating point numbers.
(c) (5 poinst) Explain a reduce/reduce confilict and give an example grammar with one.

Problem \#3 (25 points)

Answer the questions below base on the following program fragment:

> uses "stdobj.ooh"
> List: class object is
> \ \ \ \ \ \ \ \ item: object;
> \ \ \ \ \ \ \ \ next: List;
> \ \ \ \ \ \ \ \ end;
> Student: class object is
> \ \ \ \ \ \ \ \ name: string;
> \ \ \ \ \ \ \ \ login: string;
> end;
> WorkStudy: class Student is
> \ \ \ \ \ \ \ \ hours: int;
> end;
> BandMember: class Student is
> \ \ \ \ \ \ \ \ instrument: string;
> end;
> Employee: class object is
> \ \ \ \ \ \ \ \ name: string;
> \ \ \ \ \ \ \ \ jobtitle: string;
> \ \ \ \ \ \ \ \ hours: int;
> end;
(a)
(5 points) What is the type of "new(BandMember)"?
(b)

What is the type of "new(Employee.classof)"?
(c) (10 points) Suppose you wanted to write a generic procedure named "works" that returned true if the object passed was a work study student or an employee and otherwise it returned false. Write the methods required to implement this procedure. Note that the solution should be modular so that if we add a new category of student who works, we don't have to modify your existing definitions.
(d)

What does the following procedure do?

$$
\begin{aligned}
& \text { foo: procedure (} \mathrm{x} \text { : List, } \mathrm{y} \text { : object) : int is } \\
& \text { begin } \\
& \text { if (} \mathrm{x} \text { nil) then } \\
& \text { if (x.tem.classof }=\mathrm{y} \text {) then } \\
& \text { return (} 1+\text { foo(x.next, y)); } \\
& \text { else } \\
& \text { return (foo(x.next, y)); } \\
& \text { fi; } \\
& \text { fi; } \\
& \text { return (0); } \\
& \text { end }
\end{aligned}
$$

(Hint: an example call is "foo(a_var, BandMember)" where a_var is a variable of type List.)

Problem \#4 (30 points)
Given the following LR parser tables and grammer rules, answer the following question.

	id	$)$	$($	$\$$	S	L
0	s 2	s 3			1	
1				acc		
2	r 1	r 1	r 1	r 1		
3	s 2	s 3			5	4
4	s 2	s 3	s 6		7	
5	r 3	r 3	r 3	r 3		
6	r 2	r 2	r 2	r 2		
7	r 4	r 4	r 4	r 4		

The grammar is

$$
\begin{aligned}
& \text { 1:S--> id } \\
& \text { 2:S--> ')' L '(' } \\
& \text { 3:L--> S } \\
& \text { 4:L--> L S }
\end{aligned}
$$

(a) (10 points) Show the parse tree for the sentence ")) id) id (((".
(b) (20 points) Show the parser configuration as it parses that input in the following table. You must use state numbers on the syntax stack. (Hint: 25 configurations are shown in the table -- the parse may take less than, more than, or equal to that number steps.)

step	stack	input	action

CS164 Spring 1993, MT1

$1 \& n b s p \& n b s p$) $)$ id) id (((\$	shift 3
$2 \& n b s p \& n b s p$			
$3 \& n b s p \& n b s p$			
$4 \& n b s p \& n b s p$			
$5 \& n b s p \& n b s p$			
$6 \& n b s p \& n b s p$			
$7 \& n b s p \& n b s p$			
$8 \& n b s p \& n b s p$			
$9 \& n b s p \& n b s p$			
$10 \& n b s p \& n b s p$			
$11 \& n b s p \& n b s p$			
$12 \& n b s p \& n b s p$			
$13 \& n b s p \& n b s p$			
$14 \& n b s p \& n b s p$			
$15 \& n b s p \& n b s p$			
$16 \& n b s p \& n b s p$			
$17 \& n b s p \& n b s p$			
$18 \& n b s p \& n b s p$			
$19 \& n b s p \& n b s p$			
$20 \& n b s p \& n b s p$			
$21 \& n b s p \& n b s p$			
$22 \& n b s p \& n b s p$			
$23 \& n b s p \& n b s p$			
$24 \& n b s p \& n b s p$			
$25 \& n b s p \& n b s p$			

Problem \#5 (20 points) Given the following grammar, construct the finite state automation that represents the sets of collections of $\operatorname{LR}(0)$ items and the transitions between the sets.

S' --> S\$
S --> A 'a'
S --> A 'a' S
A --> 'b' 'c'
A --> 'b' A 'c'
Notice that the rule for S^{\prime} has already been added to the grammar.

