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You have one hour and twenty minutes to complete this test. Please put your login on each
sheet, as indicated, in case pages get separated. Answer all questions in the space provided
on the exam paper. Show all work (but be sure to indicate your answers clearly.) The exam is
worth a total of 20+ points (out of the total of 200), distributed as indicated on the individual
questions.

You may use any notes or books you please—anything unresponsive. We suggest that you
read all questions before trying to answer any of them and work first on those about which
you feel most confident.

You should have 8 problems on 8 pages.
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1. [2 points] Consider the following very simple grammar:

p : s ⊣
s : /* Empty */

s : ’(’ s ’)’

Suppose that we have a shift-reduce parser for this grammar. Write a regular expression that
describes the possible contents of the parsing stack just after a shift or reduce.

2. [1 point] I have a language implementation that involves a Flex lexer. A new revision of
the language standard requires me to double the number of different kinds of token returned
by the lexer. What effect will this have on the lexer’s speed and why? (Assume that both
new and old lexer action rules (the things in curly braces) all take about the same time to
execute.)

3. [1 point] From a given grammar, I am able to produce two different derivations of a certain
string, S. Under what circumstances would this indicate that the grammar is ambiguous?
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4. [3 points] An elevator travels back and forth between two floors. We can describe its
operation in the abstract as a sequence of events. It receives a command (C) to move up or
down to the other floor, it starts moving up (U) or down (D), and it arrives at the other floor
(A), after which the cycle can repeat. After the elevator starts moving and before it arrives,
it can receive a command (C) to return to the floor it just came from, in which case it will
start back in the opposite direction after it arrives (A) at the floor it’s going to. So in the
abstract, we can describe a day on the elevator with a sequence of letters from the alphabet
{A,C,D,U}. Design a DFA that recognizes the legal sequences of events, assuming that the
elevator starts on the lower floor (motionless), and ends on either floor with no commands
pending. Ignore the possibility of redundant commands (receiving two ‘C’s that command the
same thing before finishing the first). For example, “CUCADACUA” is valid, but “UDA,”
“CUUA,” “CUCA,” and “CCUA” are not.
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5. [1 point] What is the name of the dealer you’d go to for

. . . answers oracular,
Bogies spectacular,
Tetrapods tragical,
Mirrors so magical,
Facts astronomical,

Solemn or comical,. . . ?

6. [5 points] The following grammar describes the structure of a tree-like specification
language:

spec : block ⊣

block : TAG ID attrs kids

attrs : /* EMPTY */

| attr attrs

kids : /* EMPTY */

| BEGIN blocklist

blocklist :

END

| block blocklist

attr : ID ’=’ NUM

Upper-case names and quoted symbols denote terminal symbols (returned by the lexer).
Assume the following are already implemented:

# The syntactic category of the next token (ID, BEGIN, END, ’=’, etc.).

def peek(): ...

# If token is not None, check that peek() == token. Then discard the

# current value of peek() and replace it with the next token in the input.

# Indicate an error if the check fails.

def scan(token = None): ...

# Report error

def ERROR(): ...

On the next page, complete a recursive-descent parser for this language. Do recognition only;
don’t worry about semantic values.
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def spec():

# Complete the implementation here.

def block():

def attrs():

def kids():

def blocklist():

def attr():
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7. [4 points] Consider the following reverse derivation:

I P I C I N P I ⊣ ⇐
t P I C I N P I ⊣ ⇐
t P t C I N P I ⊣ ⇐
t C I N P I ⊣ ⇐
t as C I N P I ⊣ ⇐
t as C I t P I ⊣ ⇐
t as C I t P t ⊣ ⇐
t as C I t ⊣ ⇐
t as a ⊣ ⇐
t as ⊣ ⇐
e ⊣ ⇐
p

Upper-case letters (and ‘⊣’) are terminal symbols; lower-case letters are nonterminals.

a. Show the parse tree corresponding to this derivation.

Problem continues on next page
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b. Show as much as you can of the grammar corresponding to this derivation.

c. Is the grammar ambiguous? Why or why not?

d. Starting with p, show the first five derivation steps (the first five ‘⇒’ steps) in the
leftmost derivation that corresponds to the same parse tree.
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8. [4 points] A very primitive text formatter for mathematics allows one to write things
like “x^2+y_{i+1}^{3}-c_{q_{j}}” and get “x2 +y3

i+1− cqj
”. The grammar below gives the

syntax for the input language:

eqn : text { output( ) }

text : /*EMPTY*/ { }

| text item { }

item : GLYPH sub0 sup0 { }

sub0 : /*EMPTY*/ { }

| ’_’ ’{’ text ’}’ { }

sup0 : /*EMPTY*/ { }

| ’^’ ’{’ text ’}’ { }

The terminal symbols are GLYPH, ‘{’, ‘}’, ‘_’, and ‘^’. The object that you output is a box, a
container of printable text, which is defined for you in the form of two functions:

box() returns an empty box.

add(B1, B2, x, y), where B1 and B2 are boxes and x and y are numbers, returns a
new box containing B1’s text, with B2’s text positioned so that its lower-left corner
is at coordinates (x, y) relative to B1’s lower-left corner. Thus if B1 contains the text
“hello ” and B2 contains the text “world”, then add(B1, B2, 6, 1) would output as
hello world.

For each GLYPH The lexical analyzer returns a box containing text of width 1. Superscripts
and subscripts are one unit above and below the text they are attached to, respectively. We
will not bother with decreasing the font size of subscripts and superscripts for this problem.

Fill in the blanks above to achieve the desired effect. Your semantic actions must not
have side effects, except to assign to $$. You may, however, use any Python values and data
structures you’d like for semantic values (numbers, boxes, dictionaries, lists, etc.).


