
CS 164

o Please read all instructions (including these) carefully.

o Please print your name at the bottom of each page on the exam. i

o There are seven questions on the exam, each worth between 10 and 20 points. You have I hour

and 20 minutes to work on the exam, so you should plan to spend approximately 12 minutes on each question.

Midterm Examination

o The exam is closed book, but you may refer to your two sheets of prepared notes.

o Please write your answers in the space provided on the exam, and clearly mark your solutions. You may use
the backs of the exam pages as scratch paper. Please do not use any additional scratch paper.

o Solutions will be graded on correctness and clarity. There are no "tricky' problems on the exam-each
problem has a relatively simple and straightforward solution. You may get as few as 0 points for a question if
your solution is far more complicated than necessary.

NAME:

SID or SS#:

Problem, Max points, Points

1 15

2 15

3 20

4 10

5 20

6 10

7 10

Fall 94 page 1 of 8

CS 164 Handout 11 1. Regular Expressions (15 points) Consider a language where real constants are defined
as follows: A real constant contains a decimal point or E notation, or both. For instance, 0.01, 2.71821828,
-1.2El2, and 7E-5 are real constants. The symbol '-" denotes unary minus and may appear before the number
or on the exponent. There is no unary '+' operation. There must be at least one digit to left of the decimal

cs164f941

1

point, but there might be no digits to the right of the decimal point. The exponent following the "E" is a
(possibly negative) integer. Write a regular expression for such real constants. Use the standard regular
expression notation described by the following grammar: R-->(epsilon|char|R+R|R*|RR|(R) You may define
names for regular expressions you want to use in more than one place (e.g., foo = R). digit =
0+1+2+3+4+5+6+7+8+9 posint = digit digit* int = ((epsilon+ -) posint exp = E int frac = .digit* real = (int f
rac (exp + epsilon)) + (int (frac + epsilon) exp) Fall 94 page 2 of 8

CS 164 handout 11

2. Finite Automata (15 poilats)

Consider a DFA with a start state so and a transition function trans. For a state s and input character c, trans(s,
c) = s' if there is a transition from state s to state sl on character c. If there is -no transition from s on c then
trans(s, C) = none. The following algorithm simulates the behavior of such a DFA, accepting if the input
string is accepted by the DFA and rejecting

otherwise.

state - so

while there's input left do:

char +-- next input character

if trans(state,char) = none then stop and reject

state <-- trans(state,char)

(end of loop)

accept if state is a final state, otherwise reject

Now consider an NFA with a start state so and a transition function trans. In this case, for a state s and input
character c (we now allow c = c), trans(s, c) is the set of states s' for which there is a transition from s to s' on
c. In the style of the algorithm above, give a (deterministic) algorithm that simulates the behavior of such an
NFA. You may use the epsilon-closure operation described in class and in the text.

Simulate subset construction.

Use state-set instead of state,

state-set - c-closure(so)

while there's still input left do:

char<-- next input character

if esiplon-closure(Union s subset state-set trans(s, char)) = 0 then stop and reject state-set -
epsilon-closure(Union s subset state-settxans(s,char))

cs164f941

2

(end of loop)

accept if there's a final state in state-set, otherwise reject.

Fall 94 page 3 of 8

CS 164 Handout 11

3. Grammars (20 points)

Consider the following grammar. The nonterminals are E, T, and L. The terminals are +,id,(,), and ;. The start
symbol is E.

E ---> i- E+T|T

T ---> id|id()|id(L)

L ---> E;L|E

Give an LL(l) grammar that generates the same language as this grammar. As part of your work please show
that your grammar is LL(l).

(a) Eliminate left recursion:

E --->TE�

E'---> +TE'| epsilon

T --->id | id()|id(L)

L --->E; L|E

(b) Left factor:

E --->TE'

E'--->+TE'|epsilon

T --->id T'

T' à epsilon|T"

T" --->)| L)

L ---> EL'

cs164f941

3

L' ---> ; L|epsilon

(c) Check that it's LL(l). For this part you just needed to give enough information to show that there would be
no conflicts in the parsing table. The following is sufficient:

E --->+TE�|epsilon First(+TE�) = {+}

Follow(E�) = {$,),;}

T'--->epsilon |(T" First((T")={(}

Follow (T�)= {+,$,),;}

T"--->)|L) First()) ={)}

			Follow (L))={id}

L�--->;L|esiplon First(;L) = {;}

			Follow(L�)={)}

Fall 94 page 4 of 8

CS 164 Handout 11

4. Parsing (10 points)

In both parts of this question, we are looking for clarity and brevity as well as the right idea. Suppose you are
writing a parser for a programming language that includes the following syntax for looping constructs:

Loop --> do stmt while expr

| do stmt until expr

| do stmt forever

(a) (5 points) A predictive parser (i.e., a top-down parser with no backtracking) can't use this grammar. Give a
brief (a couple of sentences) explanation of this fact.

When trying to expand a production for non-terminal "loop I I , the parser cannot decide which of the three
productions to expand using only the next few input tokens.

(b) (5 points) Give a brief explanation of why a bottom-up parser does not have difficulty with this grammar.

When a bottom-up parser must decide which of the three productions to choose (reduce), the "while". "until",
or "forever" has already been read and shifted onto the stack.

cs164f941

4

Fall 94 page 5 of 8

CS 164 Handout 11

5. Parsing (20 points)

Consider the following grammar. The nonterminals are S' and S. The terminals are op and x. The start symbol
is S'.

S' --> S

S --> S OP S|X

(a) (15 points) Draw the DFA built from sets of LR(O) items for this grammar. Show the

contents of each state. (Note: Don't augment the grammar with a new start symbol.)

(b) (3 points) Is this grammar SLR(l)? Briefly explain why or why not.

(c) (2 points) Is this grammar LR(l)? Briefly explain why or why not.

Fall 94

page 6 of 8

CS 164 Handout 11

6. Bison and Abstract Syntax 'JPrees (10 points)

Consider the following constructors for a tree language:

Expression app(Expression, Expression); Expression lambda(Expression, Expression); Expression ido;

Now consider the following Bison grammar:

%token ID LAMBDA

%type <Expression> Expr

%%

Expr : ID

{ $$ = id() ; }

| '(' LAMBDA ID '.' Expr ')'

cs164f941

5

{$$ = lambda(id(), $5); }

| '(' Expr Expr ')'

{ $$ = app($2, $3); }

Draw the abstract syntax tree that would be produced when parsing the sequence of tokens below. Label aB
the nodes of your AST with the appropriate constructor.

((LAMBDA ID . (ID ID)) (LAMBDA ID . ID))

Fall 94 page 7 of 8

CS 164

Handout 11

7. Type Checking (10 points)

Suppose we want to design a type checker for Scheme programs. In Scheme, functions can be passed as
arguments to and returned as results from functions. R@ecaU the type checking rule for function application
given in class:

Self-application occurs when a function is called with itself as a parameter. This is, if f is a function taking a
function as a parameter, the f(f) is an instance of self-application. Briefly explain why type checking of
self-application must always fail using the type checking rule above.

cs164f941

6

Fall 94 page 8 of 8

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.

cs164f941

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact examfile@hkn.eecs.berkeley.edu.7

	cs164f941

